Skip to main content

2021 | OriginalPaper | Buchkapitel

6. Atomic Scale Kinetics of TSV Protrusion

verfasst von : Jinxin Liu, Zhiheng Huang, Paul Conway, Yang Liu

Erschienen in: 3D Microelectronic Packaging

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Thermal stress-induced protrusion of Cu-TSVs during thermal processing poses substantial reliability concerns in 3D stacked ICs. Following Chap. 5, a two-mode PFC model is used to simulate the microstructural evolution and Cu protrusion of blind TSVs at nanoscale in this chapter. The protrusion behavior under different mechanical loadings is discussed first and then effects of different grain structures on TSV protrusion are presented. The combined effects from both the mechanical loading condition and the Cu grain structures are found to control the complex process of protrusion. Simulation results also suggest that the grains in top end of the TSV contribute more to both the protrusion profile and the protrusion height than the grains below. In addition, the influence of parameters such as temperature and TSV geometry on protrusion are also discussed. General perspectives of TSV protrusion, including atomic mechanisms, criteria to predict the protrusion profile, and a viewpoint from plastic flow are highlighted. The chapter ends up with a discussion on future work to deepen our understanding on TSV protrusion.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat L. Spinella, T. Jiang, N. Tamura et al., Synchrotron x-ray microdiffraction investigation of scaling effects on reliability for through-silicon vias for 3D integration. IEEE Trans. Device. Mater. Reliab. 19, 568–571 (2019)CrossRef L. Spinella, T. Jiang, N. Tamura et al., Synchrotron x-ray microdiffraction investigation of scaling effects on reliability for through-silicon vias for 3D integration. IEEE Trans. Device. Mater. Reliab. 19, 568–571 (2019)CrossRef
2.
Zurück zum Zitat J.D. Messemaeker, R.J. Roussel, O.V. Pedreira et al., Statistical distribution of through-silicon via Cu pumping. IEEE Trans. Device Mater. Reliab. 17, 549–559 (2017)CrossRef J.D. Messemaeker, R.J. Roussel, O.V. Pedreira et al., Statistical distribution of through-silicon via Cu pumping. IEEE Trans. Device Mater. Reliab. 17, 549–559 (2017)CrossRef
3.
Zurück zum Zitat J. Liu, Z. Huang, Y. Zhang et al., Mechanisms of copper protrusion in through-silicon-via structures at the nanoscale. Jpn. J. Appl. Phys. 58, 016502 (2018)ADSCrossRef J. Liu, Z. Huang, Y. Zhang et al., Mechanisms of copper protrusion in through-silicon-via structures at the nanoscale. Jpn. J. Appl. Phys. 58, 016502 (2018)ADSCrossRef
5.
Zurück zum Zitat J. Liu, Z. Huang, P. Conway et al., Microstructural evolution and protrusion simulationsof Cu-TSVs under different loading conditions. J. Electron. Packag. 10(1115/1), 4044648 (2019) J. Liu, Z. Huang, P. Conway et al., Microstructural evolution and protrusion simulationsof Cu-TSVs under different loading conditions. J. Electron. Packag. 10(1115/1), 4044648 (2019)
6.
Zurück zum Zitat S. Spiesshoefer, Z. Rahman, G. Vangara et al., Process integration for through-silicon vias. J. Vac. Sci. Technol. A 23, 824–829 (2005)ADSCrossRef S. Spiesshoefer, Z. Rahman, G. Vangara et al., Process integration for through-silicon vias. J. Vac. Sci. Technol. A 23, 824–829 (2005)ADSCrossRef
7.
Zurück zum Zitat A. Heryanto, W.N. Putra, A. Trigg et al., Effect of copper TSV annealing on via protrusion for TSV wafer fabrication. J. Electron. Mater. 41, 2533–2542 (2012)ADSCrossRef A. Heryanto, W.N. Putra, A. Trigg et al., Effect of copper TSV annealing on via protrusion for TSV wafer fabrication. J. Electron. Mater. 41, 2533–2542 (2012)ADSCrossRef
8.
Zurück zum Zitat T. Jiang, C. Wu, L. Spinella et al., Plasticity mechanism for copper extrusion in through-silicon vias for three-dimensional interconnects. Appl. Phys. Lett. 103, 211906 (2013)ADSCrossRef T. Jiang, C. Wu, L. Spinella et al., Plasticity mechanism for copper extrusion in through-silicon vias for three-dimensional interconnects. Appl. Phys. Lett. 103, 211906 (2013)ADSCrossRef
9.
Zurück zum Zitat J.D. Messemaeker, O.V. Pedreira, H. Philipsen et al.: Correlation between Cu microstructure and TSV Cu pumping, in Electronic Components & Technology Conference. (IEEE, 2014), p. 613 J.D. Messemaeker, O.V. Pedreira, H. Philipsen et al.: Correlation between Cu microstructure and TSV Cu pumping, in Electronic Components & Technology Conference. (IEEE, 2014), p. 613
10.
Zurück zum Zitat Y. Wang, A. Ishii, S. Ogata, Transition of creep mechanism in nanocrystalline metals. Phys. Rev. B 84, 224102 (2011)ADSCrossRef Y. Wang, A. Ishii, S. Ogata, Transition of creep mechanism in nanocrystalline metals. Phys. Rev. B 84, 224102 (2011)ADSCrossRef
11.
Zurück zum Zitat Y. Wang, F.J. Gao, S. Ogata, Atomistic understanding of diffusion kinetics in nanocrystals from molecular dynamics simulations. Phys. Rev. B 88, 115413 (2013)ADSCrossRef Y. Wang, F.J. Gao, S. Ogata, Atomistic understanding of diffusion kinetics in nanocrystals from molecular dynamics simulations. Phys. Rev. B 88, 115413 (2013)ADSCrossRef
12.
Zurück zum Zitat M. Song, L. Chen, J. Szpunar, Thermomechanical characteristics of copper through-silicon via structures. IEEE Trans. Compon. Packag. Manuf. Technol. 5, 225–231 (2015)CrossRef M. Song, L. Chen, J. Szpunar, Thermomechanical characteristics of copper through-silicon via structures. IEEE Trans. Compon. Packag. Manuf. Technol. 5, 225–231 (2015)CrossRef
13.
Zurück zum Zitat T. Tian, R. Morusupalli, H. Shin et al., On the mechanical stresses of Cu through-silicon via (TSV) samples fabricated by SK Hynix vs. SEMATECH-enabling robust and reliable 3-D interconnect/integrated circuit (IC) technology. Procedia. Eng. 139, 101–111 (2016)CrossRef T. Tian, R. Morusupalli, H. Shin et al., On the mechanical stresses of Cu through-silicon via (TSV) samples fabricated by SK Hynix vs. SEMATECH-enabling robust and reliable 3-D interconnect/integrated circuit (IC) technology. Procedia. Eng. 139, 101–111 (2016)CrossRef
14.
Zurück zum Zitat K. Kamada, I. Yoshizawa, H. Naramoto, Temperature dependence of total free energy of activation for dislocation motion. I. Copper crystals after electron irradiation. Phys. Status Solidi A 29, 231–239 (1975)ADSCrossRef K. Kamada, I. Yoshizawa, H. Naramoto, Temperature dependence of total free energy of activation for dislocation motion. I. Copper crystals after electron irradiation. Phys. Status Solidi A 29, 231–239 (1975)ADSCrossRef
15.
Zurück zum Zitat T. Jiang, L. Spinella, J.H. Im et al., Processing effect on via extrusion for through-silicon vias (TSVs) in 3D interconnects: a comparative study. IEEE Trans. Device Mater. Reliab. 16, 465–469 (2016)CrossRef T. Jiang, L. Spinella, J.H. Im et al., Processing effect on via extrusion for through-silicon vias (TSVs) in 3D interconnects: a comparative study. IEEE Trans. Device Mater. Reliab. 16, 465–469 (2016)CrossRef
16.
Zurück zum Zitat F.X. Che, W.N. Putra, A. Heryanto et al., Study on Cu protrusion of through-silicon via. IEEE Trans. Compon. Packag. Manuf. Technol. 3, 732–739 (2013)CrossRef F.X. Che, W.N. Putra, A. Heryanto et al., Study on Cu protrusion of through-silicon via. IEEE Trans. Compon. Packag. Manuf. Technol. 3, 732–739 (2013)CrossRef
17.
Zurück zum Zitat K.H. Lu, X. Zhang, S. Ryu et al., Thermo-mechanical reliability of 3-D ICs containing through silicon vias. in Electronic Components and Technology Conference (IEEE, 2009), p. 630 K.H. Lu, X. Zhang, S. Ryu et al., Thermo-mechanical reliability of 3-D ICs containing through silicon vias. in Electronic Components and Technology Conference (IEEE, 2009), p. 630
18.
Zurück zum Zitat G. Gottstein, Physical foundations of materials science (Springer, Berlin, 2013) G. Gottstein, Physical foundations of materials science (Springer, Berlin, 2013)
19.
Zurück zum Zitat X. Yang, Y. Wang, H. Zhai et al., Time-, stress-, and temperature-dependent deformation in nanostructured copper: creep tests and simulations. J. Mech. Phys. Solids 94, 191–206 (2016)ADSCrossRef X. Yang, Y. Wang, H. Zhai et al., Time-, stress-, and temperature-dependent deformation in nanostructured copper: creep tests and simulations. J. Mech. Phys. Solids 94, 191–206 (2016)ADSCrossRef
20.
Zurück zum Zitat H. Chokshi, An analysis of creep deformation in nanocrystalline materials. Scr. Mater. 34, 1905–1910 (1996)CrossRef H. Chokshi, An analysis of creep deformation in nanocrystalline materials. Scr. Mater. 34, 1905–1910 (1996)CrossRef
21.
Zurück zum Zitat M. Kawasaki, T.G. Langdon, The many facets of deformation mechanism mapping and the application to nanostructured materials. J. Mater. Res. 28, 1827–1834 (2013)ADSCrossRef M. Kawasaki, T.G. Langdon, The many facets of deformation mechanism mapping and the application to nanostructured materials. J. Mater. Res. 28, 1827–1834 (2013)ADSCrossRef
22.
Zurück zum Zitat Z. Huang, J. Liu, P. Conway et al., An atomistic study of copper extrusion in through-silicon-via using phase field crystal models, in Electronic System-Integration Technology Conference. (IEEE, 2016), p. 7764700 Z. Huang, J. Liu, P. Conway et al., An atomistic study of copper extrusion in through-silicon-via using phase field crystal models, in Electronic System-Integration Technology Conference. (IEEE, 2016), p. 7764700
23.
Zurück zum Zitat W. Shen, K. Chen, Three-dimensional integrated circuit (3D IC) key technology: through-silicon via (TSV). Nanoscale Res. Lett. 1, 56 (2017)ADSCrossRef W. Shen, K. Chen, Three-dimensional integrated circuit (3D IC) key technology: through-silicon via (TSV). Nanoscale Res. Lett. 1, 56 (2017)ADSCrossRef
24.
Zurück zum Zitat M. Ehsan, Z. Zhou, L. Liu et al., An analytical through silicon via (TSV) surface roughness model applied to a millimeter wave 3-D IC. IEEE Trans. Electromagn. Compat. 57, 815–826 (2015)CrossRef M. Ehsan, Z. Zhou, L. Liu et al., An analytical through silicon via (TSV) surface roughness model applied to a millimeter wave 3-D IC. IEEE Trans. Electromagn. Compat. 57, 815–826 (2015)CrossRef
25.
Zurück zum Zitat T. Nakamura, H. Kitada, Y. Mizushima et al., Comparative study of side-wall roughness effects on leakage currents in through-silicon via interconnects, in International 3D Systems Integration Conference (IEEE, 2011), pp. 1–4 T. Nakamura, H. Kitada, Y. Mizushima et al., Comparative study of side-wall roughness effects on leakage currents in through-silicon via interconnects, in International 3D Systems Integration Conference (IEEE, 2011), pp. 1–4
26.
Zurück zum Zitat L. Chan, M. MacDonald, D. Chung et al., A systematic investigation of roughness height and wavelength in turbulent pipe flow in the transitionally rough regime. J. Fluid. Mech. 771, 743–777 (2015)ADSCrossRef L. Chan, M. MacDonald, D. Chung et al., A systematic investigation of roughness height and wavelength in turbulent pipe flow in the transitionally rough regime. J. Fluid. Mech. 771, 743–777 (2015)ADSCrossRef
27.
Zurück zum Zitat B. Wilshire, A.J. Battenbough, Creep and creep fracture of polycrystalline copper. Mater. Sci. Eng. A 443, 156–166 (2007)CrossRef B. Wilshire, A.J. Battenbough, Creep and creep fracture of polycrystalline copper. Mater. Sci. Eng. A 443, 156–166 (2007)CrossRef
28.
Zurück zum Zitat J. Berry, J. Rotter, C.W. Sinclair et al., Atomistic study of diffusion-mediated plasticity and creep using phase field crystal methods. Phys. Rev. B 92, 134103 (2015)ADSCrossRef J. Berry, J. Rotter, C.W. Sinclair et al., Atomistic study of diffusion-mediated plasticity and creep using phase field crystal methods. Phys. Rev. B 92, 134103 (2015)ADSCrossRef
29.
Zurück zum Zitat S. Biswas, M. Grant, I. Samajdar et al., Micromechanics of emergent patterns in plastic flows. Sci. Rep. 3, 2728 (2013)CrossRef S. Biswas, M. Grant, I. Samajdar et al., Micromechanics of emergent patterns in plastic flows. Sci. Rep. 3, 2728 (2013)CrossRef
30.
Zurück zum Zitat T. Watanabe, Grain boundary engineering: historical perspective and future prospects. J. Mater. Sci. 46, 4095–4115 (2011)ADSCrossRef T. Watanabe, Grain boundary engineering: historical perspective and future prospects. J. Mater. Sci. 46, 4095–4115 (2011)ADSCrossRef
31.
Zurück zum Zitat K. Lu, L. Lu, S. Suresh, Strengthening materials by engineering coherent internal boundaries at the nanoscale. Science 324, 349–352 (2009)ADSCrossRef K. Lu, L. Lu, S. Suresh, Strengthening materials by engineering coherent internal boundaries at the nanoscale. Science 324, 349–352 (2009)ADSCrossRef
32.
Zurück zum Zitat K. Lu, Stabilizing nanostructures in metals using grain and twin boundary architectures. Nat. Rev. Mater. 1, 16019 (2016)ADSCrossRef K. Lu, Stabilizing nanostructures in metals using grain and twin boundary architectures. Nat. Rev. Mater. 1, 16019 (2016)ADSCrossRef
33.
Zurück zum Zitat G. Gottstein, L.S. Shvindlerman, Grain Boundary Migration in Metals: Thermodynamics, Kinetics, Applications, 2nd edn. (CRC Press, Boca Raton, FL, 2009)CrossRef G. Gottstein, L.S. Shvindlerman, Grain Boundary Migration in Metals: Thermodynamics, Kinetics, Applications, 2nd edn. (CRC Press, Boca Raton, FL, 2009)CrossRef
34.
Zurück zum Zitat N. Goldenfeld, B.P. Athreya, J.A. Dantzig et al., Renormalization group approach to multiscale simulation of polycrystalline materials using the phase field crystal model. Phys. Rev. E. 72, 020601 (2005)ADSCrossRef N. Goldenfeld, B.P. Athreya, J.A. Dantzig et al., Renormalization group approach to multiscale simulation of polycrystalline materials using the phase field crystal model. Phys. Rev. E. 72, 020601 (2005)ADSCrossRef
35.
Zurück zum Zitat B.P. Athreya, N. Goldenfeld, J.A. Dantzig, Renormalization-group theory for the phase-field crystal equation. Phys. Rev. E 74, 011601 (2006)ADSCrossRef B.P. Athreya, N. Goldenfeld, J.A. Dantzig, Renormalization-group theory for the phase-field crystal equation. Phys. Rev. E 74, 011601 (2006)ADSCrossRef
36.
Zurück zum Zitat S. Praetorius, M. Salvalaglio, A. Voigt, An efficient numerical framework for the amplitude expansion of the phase-field crystal model. Modell. Simul. Mater. Sci. Eng. 27, 044004 (2019)ADSCrossRef S. Praetorius, M. Salvalaglio, A. Voigt, An efficient numerical framework for the amplitude expansion of the phase-field crystal model. Modell. Simul. Mater. Sci. Eng. 27, 044004 (2019)ADSCrossRef
37.
Zurück zum Zitat P.Y. Chan, N. Goldenfeld, Nonlinear elasticity of the phase-field crystal model from the renormalization group. Phys. Rev. E 80, 065105 (2009)ADSCrossRef P.Y. Chan, N. Goldenfeld, Nonlinear elasticity of the phase-field crystal model from the renormalization group. Phys. Rev. E 80, 065105 (2009)ADSCrossRef
38.
Zurück zum Zitat A. Skaugen, L. Angheluta, J. Vinals, Separation of elastic and plastic timescales in a phase field crystal model. Phys. Rev. Lett. 121, 255501 (2018)ADSCrossRef A. Skaugen, L. Angheluta, J. Vinals, Separation of elastic and plastic timescales in a phase field crystal model. Phys. Rev. Lett. 121, 255501 (2018)ADSCrossRef
39.
Zurück zum Zitat M. Greenwood, N. Ofori-Opoku, J. Rottler et al., Modeling structural transformations in binary alloys with phase field crystals. Phys. Rev. B 84, 064104 (2011)ADSCrossRef M. Greenwood, N. Ofori-Opoku, J. Rottler et al., Modeling structural transformations in binary alloys with phase field crystals. Phys. Rev. B 84, 064104 (2011)ADSCrossRef
40.
Zurück zum Zitat M. Sung, A. Lee, T. Kim et al., Sulfur-containing additives for mitigating Cu protrusion in through silicon via (TSV). J. Electrochem. Soc. 166, D514–D520 (2019)CrossRef M. Sung, A. Lee, T. Kim et al., Sulfur-containing additives for mitigating Cu protrusion in through silicon via (TSV). J. Electrochem. Soc. 166, D514–D520 (2019)CrossRef
Metadaten
Titel
Atomic Scale Kinetics of TSV Protrusion
verfasst von
Jinxin Liu
Zhiheng Huang
Paul Conway
Yang Liu
Copyright-Jahr
2021
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-7090-2_6

Neuer Inhalt