Skip to main content

2019 | OriginalPaper | Buchkapitel

13. Atomistic Simulation Techniques to Model Hydrogen Segregation and Hydrogen Embrittlement in Metallic Materials

verfasst von : Douglas E. Spearot, Rémi Dingreville, Christopher J. O’Brien

Erschienen in: Handbook of Mechanics of Materials

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Hydrogen embrittlement is an important phenomenon where the mechanical properties of a metallic material are degraded in the presence of hydrogen, sometimes leading to a change in the failure mode of the metallic material. Although mechanical failures due to hydrogen embrittlement have been observed for over a century, the atomic-level mechanisms associated with the hydrogen embrittlement process are still under debate. In this chapter, atomistic simulation efforts focused on hydrogen segregation and hydrogen embrittlement are reviewed. Atomistic simulation methods provide a nanoscale modeling technique capable of studying the role of hydrogen atoms on dislocation nucleation, crack propagation, and grain boundary decohesion. Examples are provided in this chapter of the use of a site-energy selection method to study hydrogen segregation and molecular dynamics simulations to study hydrogen-induced grain boundary decohesion in nickel. Grain boundary strength and work of separation in the presence of segregated hydrogen are computed from the molecular dynamics simulations. Subsequently, this data may be used in higher length scale models and simulations of the hydrogen embrittlement process.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Johnson WH. On some remarkable changes produced in iron and steels by the action of hydrogen acids. Proc R Soc Lond. 1875;23:168–75.CrossRef Johnson WH. On some remarkable changes produced in iron and steels by the action of hydrogen acids. Proc R Soc Lond. 1875;23:168–75.CrossRef
2.
Zurück zum Zitat Carneiro R, Ratnapuli RC, Lins VFC. The influence of chemical composition and microstructure of API linepipe steels on hydrogen induced cracking and sulfide stress corrosion cracking. Mater Sci Eng A. 2003;357(1):104–10.CrossRef Carneiro R, Ratnapuli RC, Lins VFC. The influence of chemical composition and microstructure of API linepipe steels on hydrogen induced cracking and sulfide stress corrosion cracking. Mater Sci Eng A. 2003;357(1):104–10.CrossRef
3.
Zurück zum Zitat Dingreville R, Karnesky RA, Puel G, Schmitt J-H. Review of the synergies between computational modeling and experimental characterization of materials across length scales. J Mater Sci. 2016;51(3):1178–203.CrossRef Dingreville R, Karnesky RA, Puel G, Schmitt J-H. Review of the synergies between computational modeling and experimental characterization of materials across length scales. J Mater Sci. 2016;51(3):1178–203.CrossRef
4.
Zurück zum Zitat Louthan MR, Caskey GR, Donovan JA, Rawl DE. Hydrogen embrittlement of metals. Mater Sci Eng. 1972;10:357–68.CrossRef Louthan MR, Caskey GR, Donovan JA, Rawl DE. Hydrogen embrittlement of metals. Mater Sci Eng. 1972;10:357–68.CrossRef
5.
Zurück zum Zitat Gest RJ, Troiano AR. Stress corrosion and hydrogen embrittlement in an aluminum alloy. Corrosion. 1974;30(8):274–9.CrossRef Gest RJ, Troiano AR. Stress corrosion and hydrogen embrittlement in an aluminum alloy. Corrosion. 1974;30(8):274–9.CrossRef
6.
Zurück zum Zitat Northwood DO, Kosasih U. Hydrides and delayed hydrogen cracking in zirconium and its alloys. Int Met Rev. 1983;28(1):92–121.CrossRef Northwood DO, Kosasih U. Hydrides and delayed hydrogen cracking in zirconium and its alloys. Int Met Rev. 1983;28(1):92–121.CrossRef
7.
Zurück zum Zitat Shih DS, Robertson IM, Birnbaum HK. Hydrogen embrittlement of α titanium: in situ TEM studies. Acta Metall. 1988;36(1):111–24.CrossRef Shih DS, Robertson IM, Birnbaum HK. Hydrogen embrittlement of α titanium: in situ TEM studies. Acta Metall. 1988;36(1):111–24.CrossRef
8.
Zurück zum Zitat Wang M, Akiyama E, Tsuzaki K. Effect of hydrogen on the fracture behavior of high strength steel during slow strain rate test. Corros Sci. 2007;49(11):4081–97.CrossRef Wang M, Akiyama E, Tsuzaki K. Effect of hydrogen on the fracture behavior of high strength steel during slow strain rate test. Corros Sci. 2007;49(11):4081–97.CrossRef
9.
Zurück zum Zitat Wang S, Martin ML, Robertson IM, Sofronis P. Effect of hydrogen environment on the separation of Fe grain boundaries. Acta Mater. 2016;107:279–88.CrossRef Wang S, Martin ML, Robertson IM, Sofronis P. Effect of hydrogen environment on the separation of Fe grain boundaries. Acta Mater. 2016;107:279–88.CrossRef
10.
Zurück zum Zitat Robertson IM, Sofronis P, Nagao A, Martin ML, Wang S, Gross DW, Nygren KE. Hydrogen embrittlement understood. Metall Mater Trans B. 2015;46(3):1085–103.CrossRef Robertson IM, Sofronis P, Nagao A, Martin ML, Wang S, Gross DW, Nygren KE. Hydrogen embrittlement understood. Metall Mater Trans B. 2015;46(3):1085–103.CrossRef
11.
Zurück zum Zitat Lynch S. Hydrogen embrittlement phenomena and mechanisms. Corros Rev. 2012;30(3–4):105–23. Lynch S. Hydrogen embrittlement phenomena and mechanisms. Corros Rev. 2012;30(3–4):105–23.
12.
Zurück zum Zitat Westlake DG. A generalized model for hydrogen embrittlement. Trans Am Soc Met. 1969;62:1000–6. Westlake DG. A generalized model for hydrogen embrittlement. Trans Am Soc Met. 1969;62:1000–6.
13.
Zurück zum Zitat Birnbaum HK. Mechanisms of hydrogen related fracture of metals; 1989. Technical report, DTIC Document. Birnbaum HK. Mechanisms of hydrogen related fracture of metals; 1989. Technical report, DTIC Document.
14.
Zurück zum Zitat Ells CE. Hydride precipitates in zirconium alloys (a review). J Nucl Mater. 1968;28(2):129–51.CrossRef Ells CE. Hydride precipitates in zirconium alloys (a review). J Nucl Mater. 1968;28(2):129–51.CrossRef
15.
Zurück zum Zitat Pfeil LB. The effect of occluded hydrogen on the tensile strength of iron. Proc R Soc Lond. Ser A, Containing Papers of a Mathematical and Physical Character. 1926;112(760):182–95.CrossRef Pfeil LB. The effect of occluded hydrogen on the tensile strength of iron. Proc R Soc Lond. Ser A, Containing Papers of a Mathematical and Physical Character. 1926;112(760):182–95.CrossRef
16.
Zurück zum Zitat Troiano AR. The role of hydrogen and other interstitials in the mechanical behavior of metals. Trans Am Soc Met. 1960;52(1):54–80. Troiano AR. The role of hydrogen and other interstitials in the mechanical behavior of metals. Trans Am Soc Met. 1960;52(1):54–80.
17.
Zurück zum Zitat Hirth JP, Rice JR. On the thermodynamics of adsorption at interfaces as it influences decohesion. Metall Trans A. 1980;11(9):1501–11.CrossRef Hirth JP, Rice JR. On the thermodynamics of adsorption at interfaces as it influences decohesion. Metall Trans A. 1980;11(9):1501–11.CrossRef
18.
Zurück zum Zitat Kirchheim R. Reducing grain boundary, dislocation line and vacancy formation energies by solute segregation. I. Theoretical background. Acta Mater. 2007;55(15):5129–38.CrossRef Kirchheim R. Reducing grain boundary, dislocation line and vacancy formation energies by solute segregation. I. Theoretical background. Acta Mater. 2007;55(15):5129–38.CrossRef
20.
Zurück zum Zitat Sofronis P, Robertson IM. Viable mechanisms of hydrogen embrittlement – A review. In: Hydrogen in matter: a collection from the papers presented at the second International Symposium on Hydrogen in Matter (ISOHIM), vol. 837. Melville: AIP Publishing; 2006. p. 64–70. Sofronis P, Robertson IM. Viable mechanisms of hydrogen embrittlement – A review. In: Hydrogen in matter: a collection from the papers presented at the second International Symposium on Hydrogen in Matter (ISOHIM), vol. 837. Melville: AIP Publishing; 2006. p. 64–70.
21.
Zurück zum Zitat Kameda J, McMahon CJ. Solute segregation and hydrogen-induced intergranular fracture in an alloy steel. Metall Trans A. 1983;14(4):903–11.CrossRef Kameda J, McMahon CJ. Solute segregation and hydrogen-induced intergranular fracture in an alloy steel. Metall Trans A. 1983;14(4):903–11.CrossRef
22.
Zurück zum Zitat Dadfarnia M, Schembri PE, Sofronis P, Foulk JW III, Nibur KA, Balch DK, et al. On modeling hydrogen-induced crack propagation under sustained load. JOM. 2014;66(8):1390–8.CrossRef Dadfarnia M, Schembri PE, Sofronis P, Foulk JW III, Nibur KA, Balch DK, et al. On modeling hydrogen-induced crack propagation under sustained load. JOM. 2014;66(8):1390–8.CrossRef
23.
Zurück zum Zitat Hirth JP. Effects of hydrogen on the properties of iron and steel. Metall Trans A. 1980;11(6):861–90.CrossRef Hirth JP. Effects of hydrogen on the properties of iron and steel. Metall Trans A. 1980;11(6):861–90.CrossRef
24.
Zurück zum Zitat Mishin Y, Sofronis P, Bassani JL. Thermodynamic and kinetic aspects of interfacial decohesion. Acta Mater. 2002;50(14):3609–22.CrossRef Mishin Y, Sofronis P, Bassani JL. Thermodynamic and kinetic aspects of interfacial decohesion. Acta Mater. 2002;50(14):3609–22.CrossRef
25.
Zurück zum Zitat Beachem CD. A new model for hydrogen-assisted cracking (hydrogen “embrittlement”). Metall Trans. 1972;3(2):441–55.CrossRef Beachem CD. A new model for hydrogen-assisted cracking (hydrogen “embrittlement”). Metall Trans. 1972;3(2):441–55.CrossRef
26.
Zurück zum Zitat Ferreira PJ, Robertson IM, Birnbaum HK. Hydrogen effects on the interaction between dislocations. Acta Mater. 1998;46(5):1749–57.CrossRef Ferreira PJ, Robertson IM, Birnbaum HK. Hydrogen effects on the interaction between dislocations. Acta Mater. 1998;46(5):1749–57.CrossRef
27.
Zurück zum Zitat Abraham DP, Altstetter CJ. Hydrogen-enhanced localization of plasticity in an austenitic stainless steel. Metall Mater Trans A. 1995;26(11):2859–71.CrossRef Abraham DP, Altstetter CJ. Hydrogen-enhanced localization of plasticity in an austenitic stainless steel. Metall Mater Trans A. 1995;26(11):2859–71.CrossRef
28.
Zurück zum Zitat Sofronis P, Robertson IM. Transmission electron microscopy observations and micromechanical/continuum models for the effect of hydrogen on the mechanical behaviour of metals. Philos Mag A. 2002;82(17–18):3405–13.CrossRef Sofronis P, Robertson IM. Transmission electron microscopy observations and micromechanical/continuum models for the effect of hydrogen on the mechanical behaviour of metals. Philos Mag A. 2002;82(17–18):3405–13.CrossRef
29.
Zurück zum Zitat Lynch SP. Environmentally assisted cracking: overview of evidence for an adsorption-induced localised-slip process. Acta Metall. 1988;36(10):2639–61.CrossRef Lynch SP. Environmentally assisted cracking: overview of evidence for an adsorption-induced localised-slip process. Acta Metall. 1988;36(10):2639–61.CrossRef
30.
Zurück zum Zitat Lynch SP. Metallographic contributions to understanding mechanisms of environmentally assisted cracking. Metallography. 1989;23(2):147–71.CrossRef Lynch SP. Metallographic contributions to understanding mechanisms of environmentally assisted cracking. Metallography. 1989;23(2):147–71.CrossRef
31.
Zurück zum Zitat Cox BN, Bauschlicher CW. Surface relaxation and induced stress accompanying the adsorption of H upon Be (0001). Surf Sci. 1981;102(2–3):295–311.CrossRef Cox BN, Bauschlicher CW. Surface relaxation and induced stress accompanying the adsorption of H upon Be (0001). Surf Sci. 1981;102(2–3):295–311.CrossRef
32.
Zurück zum Zitat Oriani RA. On the possible role of the surface stress in environmentally induced embrittlement and pitting. Scr Metall. 1984;18(3):265–8.CrossRef Oriani RA. On the possible role of the surface stress in environmentally induced embrittlement and pitting. Scr Metall. 1984;18(3):265–8.CrossRef
33.
Zurück zum Zitat Allen MP, Tildesley DJ. Computer simulation of liquids. Oxford: Oxford Science Publications; 1987.MATH Allen MP, Tildesley DJ. Computer simulation of liquids. Oxford: Oxford Science Publications; 1987.MATH
34.
Zurück zum Zitat Haile JM. Molecular dynamics simulation: elementary methods. New York: Wiley; 1992. Haile JM. Molecular dynamics simulation: elementary methods. New York: Wiley; 1992.
35.
Zurück zum Zitat Daw MS, Baskes MI. Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals. Phys Rev Lett. 1983;25(17):1285–8.CrossRef Daw MS, Baskes MI. Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals. Phys Rev Lett. 1983;25(17):1285–8.CrossRef
36.
Zurück zum Zitat Daw MS, Baskes MI. Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals. Phys Rev B. 1984;29(12):6443–53.CrossRef Daw MS, Baskes MI. Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals. Phys Rev B. 1984;29(12):6443–53.CrossRef
37.
Zurück zum Zitat Foiles SM, Baskes MI, Daw MS. Embedded-atom-method functions for the FCC metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys Rev B. 1986;33(12):7983–91.CrossRef Foiles SM, Baskes MI, Daw MS. Embedded-atom-method functions for the FCC metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys Rev B. 1986;33(12):7983–91.CrossRef
38.
Zurück zum Zitat Ruda M, Farkas D, Abriata J. Embedded-atom interatomic potentials for hydrogen in metals and intermetallic alloys. Phys Rev B. 1996;54(14):9765–74.CrossRef Ruda M, Farkas D, Abriata J. Embedded-atom interatomic potentials for hydrogen in metals and intermetallic alloys. Phys Rev B. 1996;54(14):9765–74.CrossRef
39.
Zurück zum Zitat Angelo JM, Moody NR, Baskes MI. Trapping of hydrogen to lattice defects in nickel. Model Simul Mater Sci Eng. 1995;3:289–307.CrossRef Angelo JM, Moody NR, Baskes MI. Trapping of hydrogen to lattice defects in nickel. Model Simul Mater Sci Eng. 1995;3:289–307.CrossRef
40.
Zurück zum Zitat Baskes MI, Sha X, Angelo JM, Moody NR. Trapping of hydrogen to lattice defects in nickel. Model Simul Mater Sci Eng. 1997;5:651–2.CrossRef Baskes MI, Sha X, Angelo JM, Moody NR. Trapping of hydrogen to lattice defects in nickel. Model Simul Mater Sci Eng. 1997;5:651–2.CrossRef
41.
Zurück zum Zitat Lee B-J, Jang J-W. A modified embedded-atom method interatomic potential for the Fe-H system. Acta Mater. 2007;55:6779–88.CrossRef Lee B-J, Jang J-W. A modified embedded-atom method interatomic potential for the Fe-H system. Acta Mater. 2007;55:6779–88.CrossRef
42.
Zurück zum Zitat Baskes MI. Modified embedded-atom potentials for cubic materials and impurities. Phys Rev B. 1992;46(2):2727–42.CrossRef Baskes MI. Modified embedded-atom potentials for cubic materials and impurities. Phys Rev B. 1992;46(2):2727–42.CrossRef
44.
Zurück zum Zitat Anderson HC. Molecular dynamics simulations at constant pressure and/or temperature. J Chem Phys. 1980;72:2384–93.CrossRef Anderson HC. Molecular dynamics simulations at constant pressure and/or temperature. J Chem Phys. 1980;72:2384–93.CrossRef
45.
Zurück zum Zitat Melchionna S, Ciccotti G, Holian BL, Hoover NPT. Dynamics for systems varying in shape and size. Mol Phys. 1993;78:533–44.CrossRef Melchionna S, Ciccotti G, Holian BL, Hoover NPT. Dynamics for systems varying in shape and size. Mol Phys. 1993;78:533–44.CrossRef
46.
Zurück zum Zitat Hoagland RG, Heinisch HL. An atomistic simulation of the influence of hydrogen on the fracture behavior of nickel. J Mater Res. 1992;7(8):2080–8.CrossRef Hoagland RG, Heinisch HL. An atomistic simulation of the influence of hydrogen on the fracture behavior of nickel. J Mater Res. 1992;7(8):2080–8.CrossRef
47.
Zurück zum Zitat Hu Z, Fukuyama S, Yokogawa K, Okamoto S. Hydrogen embrittlement of a single crystal of iron on a nanometre scale at a crack tip by molecular dynamics. Model Simul Mater Sci Eng. 1999;7:541–51.CrossRef Hu Z, Fukuyama S, Yokogawa K, Okamoto S. Hydrogen embrittlement of a single crystal of iron on a nanometre scale at a crack tip by molecular dynamics. Model Simul Mater Sci Eng. 1999;7:541–51.CrossRef
48.
Zurück zum Zitat Xu X, Wen M, Hu Z, Fukuyama S, Yokogawa K. Atomistic process on hydrogen embrittlement of a single crystal of nickel by the embedded atom method. Comput Mater Sci. 2002;23:131–8.CrossRef Xu X, Wen M, Hu Z, Fukuyama S, Yokogawa K. Atomistic process on hydrogen embrittlement of a single crystal of nickel by the embedded atom method. Comput Mater Sci. 2002;23:131–8.CrossRef
49.
Zurück zum Zitat Wen M, Xu X-J, Omura Y, Fukuyama S, Yokogawa K. Modeling of hydrogen embrittlement in single crystal Ni. Comput Mater Sci. 2004;30:202–11.CrossRef Wen M, Xu X-J, Omura Y, Fukuyama S, Yokogawa K. Modeling of hydrogen embrittlement in single crystal Ni. Comput Mater Sci. 2004;30:202–11.CrossRef
50.
Zurück zum Zitat Solanki KN, Ward DN, Bammann DJ. A nanoscale study of dislocation nucleation at the crack tip in the nickel-hydrogen system. Metall Mater Trans A. 2011;42:340–7.CrossRef Solanki KN, Ward DN, Bammann DJ. A nanoscale study of dislocation nucleation at the crack tip in the nickel-hydrogen system. Metall Mater Trans A. 2011;42:340–7.CrossRef
51.
Zurück zum Zitat Song J, Curtin WA. Testing continuum concepts for hydrogen embrittlement in metals using atomistics. Model Simul Mater Sci Eng. 2010;18:045003.CrossRef Song J, Curtin WA. Testing continuum concepts for hydrogen embrittlement in metals using atomistics. Model Simul Mater Sci Eng. 2010;18:045003.CrossRef
52.
Zurück zum Zitat Chandler MQ, Horstemeyer MF, Baskes MI, Wagner GJ, Gullett PM, Jelinek B. Hydrogen effects on nanovoid nucleation at nickel grain boundaries. Acta Mater. 2008;56:619–31.CrossRef Chandler MQ, Horstemeyer MF, Baskes MI, Wagner GJ, Gullett PM, Jelinek B. Hydrogen effects on nanovoid nucleation at nickel grain boundaries. Acta Mater. 2008;56:619–31.CrossRef
53.
Zurück zum Zitat Kuhr B, Farkas D, Robertson IM. Atomistic studies of hydrogen effects on grain boundary structure and deformation response in FCC Ni. Comput Mater Sci. 2016;122:92–101.CrossRef Kuhr B, Farkas D, Robertson IM. Atomistic studies of hydrogen effects on grain boundary structure and deformation response in FCC Ni. Comput Mater Sci. 2016;122:92–101.CrossRef
54.
Zurück zum Zitat Song J, Curtin WA. A nanoscale mechanism for hydrogen embrittlement in metals. Acta Mater. 2011;59:1557–69.CrossRef Song J, Curtin WA. A nanoscale mechanism for hydrogen embrittlement in metals. Acta Mater. 2011;59:1557–69.CrossRef
55.
Zurück zum Zitat Song J, Curtin WA. Atomic mechanism and prediction of hydrogen embrittlement in iron. Nat Mater. 2013;12(2):145–51.CrossRef Song J, Curtin WA. Atomic mechanism and prediction of hydrogen embrittlement in iron. Nat Mater. 2013;12(2):145–51.CrossRef
56.
Zurück zum Zitat Song J, Curtin WA. Mechanisms of hydrogen-enhanced localized plasticity: an atomistic study using α-Fe as a model system. Acta Mater. 2014;68:61–9.CrossRef Song J, Curtin WA. Mechanisms of hydrogen-enhanced localized plasticity: an atomistic study using α-Fe as a model system. Acta Mater. 2014;68:61–9.CrossRef
57.
Zurück zum Zitat Alvaro A, Thue Jensen I, Kheradmand N, Løvvik OM, Olden V. Hydrogen embrittlement in nickel, visited by first principles modeling, cohesive zone simulation and nanomechanical testing. Int J Hydrog Energy. 2015;40(47):16892–900.CrossRef Alvaro A, Thue Jensen I, Kheradmand N, Løvvik OM, Olden V. Hydrogen embrittlement in nickel, visited by first principles modeling, cohesive zone simulation and nanomechanical testing. Int J Hydrog Energy. 2015;40(47):16892–900.CrossRef
58.
Zurück zum Zitat Di Stefano D, Mrovec M, Elsässer C. First-principles investigation of hydrogen trapping and diffusion at grain boundaries in nickel. Acta Mater. 2015;98:306–12.CrossRef Di Stefano D, Mrovec M, Elsässer C. First-principles investigation of hydrogen trapping and diffusion at grain boundaries in nickel. Acta Mater. 2015;98:306–12.CrossRef
59.
Zurück zum Zitat Sutton AP, Vitek V. On the structure of tilt grain boundaries in cubic metals I. Symmetrical tilt boundaries. Philos Trans R Soc A: Math Phys Eng Sci. 1983;309(1506):1–36.CrossRef Sutton AP, Vitek V. On the structure of tilt grain boundaries in cubic metals I. Symmetrical tilt boundaries. Philos Trans R Soc A: Math Phys Eng Sci. 1983;309(1506):1–36.CrossRef
60.
Zurück zum Zitat O’Brien CJ, Foiles SM. Hydrogen segregation to inclined twin grain boundaries in nickel. Philos Mag. 2016;96(26):2808–28.CrossRef O’Brien CJ, Foiles SM. Hydrogen segregation to inclined twin grain boundaries in nickel. Philos Mag. 2016;96(26):2808–28.CrossRef
61.
Zurück zum Zitat O’Brien CJ, Medlin DL, Foiles SM. Misoriented grain boundaries vicinal to the (111) 〈1 -1 0〉 twin in nickel Part I: thermodynamics & temperature-dependent structure. Philos Mag. 2016;96(13):1285–304.CrossRef O’Brien CJ, Medlin DL, Foiles SM. Misoriented grain boundaries vicinal to the (111) 〈1 -1 0〉 twin in nickel Part I: thermodynamics & temperature-dependent structure. Philos Mag. 2016;96(13):1285–304.CrossRef
62.
Zurück zum Zitat Tsuzuki H, Branicio PS, Rino JP. Structural characterization of deformed crystals by analysis of common atomic neighborhood. Comput Phys Commun. 2007;177(6):518–23.CrossRef Tsuzuki H, Branicio PS, Rino JP. Structural characterization of deformed crystals by analysis of common atomic neighborhood. Comput Phys Commun. 2007;177(6):518–23.CrossRef
63.
Zurück zum Zitat Faken D, Jónsson H. Systematic analysis of local atomic structure combined with 3D computer graphics. Comput Mater Sci. 1994;2(2):279–86.CrossRef Faken D, Jónsson H. Systematic analysis of local atomic structure combined with 3D computer graphics. Comput Mater Sci. 1994;2(2):279–86.CrossRef
64.
Zurück zum Zitat Pedersen A, Jónsson H. Simulations of hydrogen diffusion at grain boundaries in aluminum. Acta Mater. 2009;57(14):4036–45.CrossRef Pedersen A, Jónsson H. Simulations of hydrogen diffusion at grain boundaries in aluminum. Acta Mater. 2009;57(14):4036–45.CrossRef
65.
Zurück zum Zitat Oudriss A, Creus J, Bouhattate J, Conforto E, Berziou C, Savall C, Feaugas X. Grain size and grain-boundary effects on diffusion and trapping of hydrogen in pure nickel. Acta Mater. 2012;60(19):6814–28.CrossRef Oudriss A, Creus J, Bouhattate J, Conforto E, Berziou C, Savall C, Feaugas X. Grain size and grain-boundary effects on diffusion and trapping of hydrogen in pure nickel. Acta Mater. 2012;60(19):6814–28.CrossRef
66.
Zurück zum Zitat Frenkel D, Smit B. Understanding molecular simulation. 2nd ed. Academic Press; London; 2002.MATHCrossRef Frenkel D, Smit B. Understanding molecular simulation. 2nd ed. Academic Press; London; 2002.MATHCrossRef
67.
Zurück zum Zitat O’Brien CJ, Foiles SM. Misoriented grain boundaries vicinal to the (111) 〈1 -1 0〉 twin in nickel Part II: thermodynamics of hydrogen segregation. Philos Mag. 2016;96(14):1463–84.CrossRef O’Brien CJ, Foiles SM. Misoriented grain boundaries vicinal to the (111) 〈1 -1 0〉 twin in nickel Part II: thermodynamics of hydrogen segregation. Philos Mag. 2016;96(14):1463–84.CrossRef
68.
Zurück zum Zitat Chandler MQ, Horstemeyer MF, Baskes MI, Gullett PM, Wagner GJ, Jelinek B. Hydrogen effects on nanovoid nucleation in face-centered cubic single-crystals. Acta Mater. 2008;56:95–104.CrossRef Chandler MQ, Horstemeyer MF, Baskes MI, Gullett PM, Wagner GJ, Jelinek B. Hydrogen effects on nanovoid nucleation in face-centered cubic single-crystals. Acta Mater. 2008;56:95–104.CrossRef
69.
Zurück zum Zitat Foiles S. Calculation of the surface segregation of Ni-Cu alloys with the use of the embedded-atom method. Phys Rev B. 1985;32(12):7685–93.CrossRef Foiles S. Calculation of the surface segregation of Ni-Cu alloys with the use of the embedded-atom method. Phys Rev B. 1985;32(12):7685–93.CrossRef
70.
Zurück zum Zitat Mishin Y, Cahn JW. Thermodynamics of Cottrell atmospheres tested by atomistic simulations. Acta Mater. 2016;117:197–206.CrossRef Mishin Y, Cahn JW. Thermodynamics of Cottrell atmospheres tested by atomistic simulations. Acta Mater. 2016;117:197–206.CrossRef
71.
Zurück zum Zitat Von Pezold J, Lymperakis L, Neugebeauer J. Hydrogen-enhanced local plasticity at dilute bulk H concentrations: the role of H-H interactions and the formation of local hydrides. Acta Mater. 2011;59(8):2969–80.CrossRef Von Pezold J, Lymperakis L, Neugebeauer J. Hydrogen-enhanced local plasticity at dilute bulk H concentrations: the role of H-H interactions and the formation of local hydrides. Acta Mater. 2011;59(8):2969–80.CrossRef
72.
Zurück zum Zitat Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys. 1995;117(1):1–19.MATHCrossRef Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys. 1995;117(1):1–19.MATHCrossRef
73.
Zurück zum Zitat Sadigh B, Erhart P, Stukowski A, Caro A, Martinez E, Zepeda-Ruiz L. Scalable parallel Monte Carlo algorithm for atomistic simulations of precipitation in alloys. Phys Rev B. 2012;85(18):184203.CrossRef Sadigh B, Erhart P, Stukowski A, Caro A, Martinez E, Zepeda-Ruiz L. Scalable parallel Monte Carlo algorithm for atomistic simulations of precipitation in alloys. Phys Rev B. 2012;85(18):184203.CrossRef
74.
Zurück zum Zitat Solanki KN, Tschopp MA, Bhatia MA, Rhodes NR. Atomistic investigation of the role of grain boundary structure on hydrogen segregation and embrittlement in α-Fe. Metall Mater Trans A. 2012;44(3):1365–75.CrossRef Solanki KN, Tschopp MA, Bhatia MA, Rhodes NR. Atomistic investigation of the role of grain boundary structure on hydrogen segregation and embrittlement in α-Fe. Metall Mater Trans A. 2012;44(3):1365–75.CrossRef
75.
Zurück zum Zitat Vitek V, Wang GJ. Atomic structure of grain boundaries and intergranular segregation. J Phys Colloq. 1982;43(C6):147–61.CrossRef Vitek V, Wang GJ. Atomic structure of grain boundaries and intergranular segregation. J Phys Colloq. 1982;43(C6):147–61.CrossRef
76.
Zurück zum Zitat Cantwell PR, Tang M, Dillon SJ, Luo J, Rohrer GS, Harmer MP. Grain boundary complexions. Acta Mater. 2013;62(152):1–48. Cantwell PR, Tang M, Dillon SJ, Luo J, Rohrer GS, Harmer MP. Grain boundary complexions. Acta Mater. 2013;62(152):1–48.
77.
Zurück zum Zitat Straumal B, Baretzky B. Grain boundary phase transitions and their influence on properties of polycrystals. Interface Sci. 2004;12(2–3):147–55.CrossRef Straumal B, Baretzky B. Grain boundary phase transitions and their influence on properties of polycrystals. Interface Sci. 2004;12(2–3):147–55.CrossRef
78.
Zurück zum Zitat Seita M, Hanson JP, Gradecak S, Demkowicz MJ. The dual role of coherent twin boundaries in hydrogen embrittlement. Nat Commun. 2015;6:6164.CrossRef Seita M, Hanson JP, Gradecak S, Demkowicz MJ. The dual role of coherent twin boundaries in hydrogen embrittlement. Nat Commun. 2015;6:6164.CrossRef
79.
Zurück zum Zitat Yamakov V, Saether E, Phillips DR, Glaessgen EH. Molecular-dynamics simulation-based cohesive zone representation of intergranular fracture processes in aluminum. J Mech Phys Solids. 2006;54:1899–928.MATHCrossRef Yamakov V, Saether E, Phillips DR, Glaessgen EH. Molecular-dynamics simulation-based cohesive zone representation of intergranular fracture processes in aluminum. J Mech Phys Solids. 2006;54:1899–928.MATHCrossRef
80.
Zurück zum Zitat Yamakov V, Saether E, Glaessgen EH. Molecular modeling of intergranular fracture in aluminum: constitutive relation for interface debonding. J Mater Sci. 2008;43:7488–94.CrossRef Yamakov V, Saether E, Glaessgen EH. Molecular modeling of intergranular fracture in aluminum: constitutive relation for interface debonding. J Mater Sci. 2008;43:7488–94.CrossRef
81.
Zurück zum Zitat Barrows W, Dingreville R, Spearot D. Traction-separation relationships for hydrogen induced grain boundary embrittlement in nickel via molecular dynamics simulations. Mater Sci Eng A. 2016;650:354–64.CrossRef Barrows W, Dingreville R, Spearot D. Traction-separation relationships for hydrogen induced grain boundary embrittlement in nickel via molecular dynamics simulations. Mater Sci Eng A. 2016;650:354–64.CrossRef
82.
Zurück zum Zitat Dingreville R, Aksoy D, Spearot DE. A primer on selecting grain boundary sets for comparison of interfacial fracture properties in molecular dynamics simulations, Scientific Reports, 2017;7: 8332.CrossRef Dingreville R, Aksoy D, Spearot DE. A primer on selecting grain boundary sets for comparison of interfacial fracture properties in molecular dynamics simulations, Scientific Reports, 2017;7: 8332.CrossRef
83.
Zurück zum Zitat Adlakha I, Tschopp MA, Solanki KN. The role of grain boundary structure and crystal orientation on crack growth asymmetry in aluminum. Mater Sci Eng A. 2014;618:345–54.CrossRef Adlakha I, Tschopp MA, Solanki KN. The role of grain boundary structure and crystal orientation on crack growth asymmetry in aluminum. Mater Sci Eng A. 2014;618:345–54.CrossRef
Metadaten
Titel
Atomistic Simulation Techniques to Model Hydrogen Segregation and Hydrogen Embrittlement in Metallic Materials
verfasst von
Douglas E. Spearot
Rémi Dingreville
Christopher J. O’Brien
Copyright-Jahr
2019
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-6884-3_14

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.