Skip to main content
Erschienen in: Journal of Computational Electronics 4/2016

13.09.2016

Atomistic tight-binding computations in the new class of CdSe/AlP II–VI core/III–V shell nanocrystals

verfasst von: Worasak Sukkabot

Erschienen in: Journal of Computational Electronics | Ausgabe 4/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Using the atomistic tight-binding theory in conjunction with a configuration interaction description, I investigate the new class of CdSe/AlP II–VI core/III–V shell nanocrystals. In an effort to theoretically analyze the atomistic behaviors, I calculate single-particle spectra, atomistic character, optical band gaps, ground-state wave function overlaps, ground-state oscillation strengths, ground-state Coulomb energies, ground-state exchange energies, Stokes shift and fine structure splitting under different numbers of the growth shell monolayers (MLs). I highlight that CdSe/AlP II–VI core/III–V shell nanocrystals have strong thickness dependence on the structural and optical properties. The reduction of the optical band gaps is recognized with the increasing coated shell thickness because of quantum confinement. The improvement of wave function overlaps, oscillation strengths, Stokes shift, and fine structure splitting is demonstrated at the growth shell thickness of 1.0 ML. This atomistic prediction will contribute to the understanding of natural properties in the new class of colloidal CdSe/AlP II–VI core/III–V shell nanocrystals and will deliver some significant guidelines for further experimental investigations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Klimov, V.I., Mikhailovsky, A.A., Xu, S., Malko, A., Hollingsworth, J.A., Leatherdale, C.A., Eisler, H.J., Bawendi, M.G.: Optical gain and stimulated emission in nanocrystal quantum dots. Science 290, 314–317 (2000)CrossRef Klimov, V.I., Mikhailovsky, A.A., Xu, S., Malko, A., Hollingsworth, J.A., Leatherdale, C.A., Eisler, H.J., Bawendi, M.G.: Optical gain and stimulated emission in nanocrystal quantum dots. Science 290, 314–317 (2000)CrossRef
2.
Zurück zum Zitat Rogach, A.L., Gaponik, N., Lupton, J.M., Bertoni, C., Gallardo, D.E., Dunn, S., Li Pira, N., Paderi, M., Repetto, P., Ramanov, S.G., O’Dwyer, C., Sotomayor Torres, C.M., Eychmuller, A.: Light-emitting diodes with semiconductor nanocrystals. Angew. Chem. Int. Ed. 47, 6538–6549 (2008)CrossRef Rogach, A.L., Gaponik, N., Lupton, J.M., Bertoni, C., Gallardo, D.E., Dunn, S., Li Pira, N., Paderi, M., Repetto, P., Ramanov, S.G., O’Dwyer, C., Sotomayor Torres, C.M., Eychmuller, A.: Light-emitting diodes with semiconductor nanocrystals. Angew. Chem. Int. Ed. 47, 6538–6549 (2008)CrossRef
3.
Zurück zum Zitat Wang, C., Shim, M., Guyot-Sionnest, P.: Electrochromic nanocrystal quantum dots. Science 291, 2390–2392 (2001)CrossRef Wang, C., Shim, M., Guyot-Sionnest, P.: Electrochromic nanocrystal quantum dots. Science 291, 2390–2392 (2001)CrossRef
4.
Zurück zum Zitat Achermann, M., Petruska, M.A., Koleske, D.D., Crawford, M.H., Klimov, V.I.: Nanocrystal-based light-emitting diodes utilizing high-efficiency nonradiative energy transfer for color conversion. Nano Lett. 6, 1396–1400 (2006)CrossRef Achermann, M., Petruska, M.A., Koleske, D.D., Crawford, M.H., Klimov, V.I.: Nanocrystal-based light-emitting diodes utilizing high-efficiency nonradiative energy transfer for color conversion. Nano Lett. 6, 1396–1400 (2006)CrossRef
5.
Zurück zum Zitat Htoon, H., Hollingsworth, J.A., Malko, A.V., Dickerson, R., Klimov, V.I.: Light amplification in semiconductor nanocrystals: quantum rods versus quantum dots. Appl. Phys. Lett. 82, 4776–4778 (2003)CrossRef Htoon, H., Hollingsworth, J.A., Malko, A.V., Dickerson, R., Klimov, V.I.: Light amplification in semiconductor nanocrystals: quantum rods versus quantum dots. Appl. Phys. Lett. 82, 4776–4778 (2003)CrossRef
6.
Zurück zum Zitat Lieber, C.M.: Nanoscale science and technology: building a big future from small things. MRS Bull. 28, 489–491 (2003)CrossRef Lieber, C.M.: Nanoscale science and technology: building a big future from small things. MRS Bull. 28, 489–491 (2003)CrossRef
7.
Zurück zum Zitat Son, D.I., Kim, J.H., Park, D.H., Choi, W.K., Li, F., Ham, J.H., Kim, T.W.: Nonvolatile flexible organic bistable devices fabricated utilizing CdSe/ZnS nanoparticles embedded in a conducting polyN-vinylcarbazole polymer layer. Nanotechnology 19, 055204–055208 (2009)CrossRef Son, D.I., Kim, J.H., Park, D.H., Choi, W.K., Li, F., Ham, J.H., Kim, T.W.: Nonvolatile flexible organic bistable devices fabricated utilizing CdSe/ZnS nanoparticles embedded in a conducting polyN-vinylcarbazole polymer layer. Nanotechnology 19, 055204–055208 (2009)CrossRef
8.
9.
Zurück zum Zitat Gur, I., Fromer, N.A., Geier, M.L., Alivisatos, A.P.: Air-stable all-inorganic nanocrystal solar cells processed from solution. Science 310, 462–465 (2005)CrossRef Gur, I., Fromer, N.A., Geier, M.L., Alivisatos, A.P.: Air-stable all-inorganic nanocrystal solar cells processed from solution. Science 310, 462–465 (2005)CrossRef
10.
Zurück zum Zitat Hanna, M.C., Nozik, A.J.: Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers. J. Appl. Phys. 100, 074510–074518 (2006)CrossRef Hanna, M.C., Nozik, A.J.: Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers. J. Appl. Phys. 100, 074510–074518 (2006)CrossRef
11.
Zurück zum Zitat Kamat, P.V.: Quantum dot solar cells. Semiconductor nanocrystals as light harvesters. J. Phys. Chem. C 112, 18737–18753 (2008)CrossRef Kamat, P.V.: Quantum dot solar cells. Semiconductor nanocrystals as light harvesters. J. Phys. Chem. C 112, 18737–18753 (2008)CrossRef
12.
Zurück zum Zitat Bullen, C., Mulvaney, P.: The effects of chemisorption on the luminescence of CdSe quantum dots. Langmuir 22, 3007–3013 (2006)CrossRef Bullen, C., Mulvaney, P.: The effects of chemisorption on the luminescence of CdSe quantum dots. Langmuir 22, 3007–3013 (2006)CrossRef
13.
Zurück zum Zitat Achilefu, S.: Lighting up tumors with receptor-specific optical molecular probes. Technol. Cancer Res. Treat. 3, 393–409 (2004)CrossRef Achilefu, S.: Lighting up tumors with receptor-specific optical molecular probes. Technol. Cancer Res. Treat. 3, 393–409 (2004)CrossRef
14.
Zurück zum Zitat Bruchez, M., Moronne, M., Gin, P., Weiss, S., Alivisatos, A.P.: Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013–2016 (2008)CrossRef Bruchez, M., Moronne, M., Gin, P., Weiss, S., Alivisatos, A.P.: Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013–2016 (2008)CrossRef
15.
Zurück zum Zitat Mukherjee, A., Ghosh, S.: Optimum excitation photon energy for CdSe–ZnS core–shell quantum dot based luminescence imaging. J. Phys. D 45, 195103–195107 (2012)CrossRef Mukherjee, A., Ghosh, S.: Optimum excitation photon energy for CdSe–ZnS core–shell quantum dot based luminescence imaging. J. Phys. D 45, 195103–195107 (2012)CrossRef
16.
Zurück zum Zitat Dahan, M., Levi, S., Luccardini, C., Rostaing, P., Riveau, B., Triller, A.: Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science 302, 442–445 (2003)CrossRef Dahan, M., Levi, S., Luccardini, C., Rostaing, P., Riveau, B., Triller, A.: Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science 302, 442–445 (2003)CrossRef
17.
Zurück zum Zitat Sukkabot, W.: Electronic structure and optical properties of colloidal InAs/InP core/shell nanocrystals: tight-binding calculations. Physica E 63, 235–240 (2014)CrossRef Sukkabot, W.: Electronic structure and optical properties of colloidal InAs/InP core/shell nanocrystals: tight-binding calculations. Physica E 63, 235–240 (2014)CrossRef
18.
Zurück zum Zitat Sukkabot, W.: Influence of ZnSe core on the structural and optical properties of ZnSe/ZnS core/shell nanocrystals: tight-binding theory. Superlattices Microstruct. 75, 739–748 (2014)CrossRef Sukkabot, W.: Influence of ZnSe core on the structural and optical properties of ZnSe/ZnS core/shell nanocrystals: tight-binding theory. Superlattices Microstruct. 75, 739–748 (2014)CrossRef
19.
Zurück zum Zitat Sukkabot, W.: Tight-binding study of the manipulation of the structural and optical properties in cadmium selenide/zinc sulfide core/shell nanocrystals with shell thickness. Mater. Sci. Semicond. Process. 27, 1020–1027 (2014)CrossRef Sukkabot, W.: Tight-binding study of the manipulation of the structural and optical properties in cadmium selenide/zinc sulfide core/shell nanocrystals with shell thickness. Mater. Sci. Semicond. Process. 27, 1020–1027 (2014)CrossRef
20.
Zurück zum Zitat Sukkabot, W.: Atomistic tight-binding theory in CdSe/ZnSe wurtzite core/shell nanocrystals. Comput. Mater. Sci. 96, 336–341 (2015)CrossRef Sukkabot, W.: Atomistic tight-binding theory in CdSe/ZnSe wurtzite core/shell nanocrystals. Comput. Mater. Sci. 96, 336–341 (2015)CrossRef
21.
Zurück zum Zitat Sukkabot, W.: Structural and optical properties of zinc-blende CdSe/CdS core/shell nanocrystals: atomistic tight-binding theory. Mater. Sci. Semicond. Process. 34, 14–20 (2015)CrossRef Sukkabot, W.: Structural and optical properties of zinc-blende CdSe/CdS core/shell nanocrystals: atomistic tight-binding theory. Mater. Sci. Semicond. Process. 34, 14–20 (2015)CrossRef
22.
Zurück zum Zitat Sukkabot, W.: Effect of ZnS shell on tight-binding simulation of zinc-blende ZnTe/ZnS core/shell nanocrystals. Comput. Mater. Sci. 101, 275–280 (2015)CrossRef Sukkabot, W.: Effect of ZnS shell on tight-binding simulation of zinc-blende ZnTe/ZnS core/shell nanocrystals. Comput. Mater. Sci. 101, 275–280 (2015)CrossRef
23.
Zurück zum Zitat Sukkabot, W.: Atomistic tight-binding computations in electronic structures and optical properties of type-II CdTe/CdSe core/shell nanocrystals. Comput. Mater. Sci. 111, 23–27 (2016)CrossRef Sukkabot, W.: Atomistic tight-binding computations in electronic structures and optical properties of type-II CdTe/CdSe core/shell nanocrystals. Comput. Mater. Sci. 111, 23–27 (2016)CrossRef
24.
Zurück zum Zitat Sukkabot, W.: Manipulation of structural and optical properties in charge-separating ZnTe/ZnSe chalcogenide core/shell semiconductor nanocrystals: atomistic tight-binding theory. Physica E 74, 457–460 (2015)CrossRef Sukkabot, W.: Manipulation of structural and optical properties in charge-separating ZnTe/ZnSe chalcogenide core/shell semiconductor nanocrystals: atomistic tight-binding theory. Physica E 74, 457–460 (2015)CrossRef
25.
Zurück zum Zitat Wang, G., Ji, J., Li, C., Yu, L., Duan, W., Wei, W., You, X., Xu, X.: Type-II core–shell Si–CdS nanocrystals: synthesis and spectroscopic and electrical properties. Chem. Commun. 50, 11922–11925 (2014)CrossRef Wang, G., Ji, J., Li, C., Yu, L., Duan, W., Wei, W., You, X., Xu, X.: Type-II core–shell Si–CdS nanocrystals: synthesis and spectroscopic and electrical properties. Chem. Commun. 50, 11922–11925 (2014)CrossRef
26.
Zurück zum Zitat Cao, Y.W., Banin, U.: Synthesis and characterization of InAs/InP and InAs/CdSe core/shell nanocrystals. Angew. Chem. Int. Ed. Engl. 38(24), 3692–3694 (1999)CrossRef Cao, Y.W., Banin, U.: Synthesis and characterization of InAs/InP and InAs/CdSe core/shell nanocrystals. Angew. Chem. Int. Ed. Engl. 38(24), 3692–3694 (1999)CrossRef
27.
Zurück zum Zitat Kim, S., Park, J., Kim, S., Jung, W., Sung, J., Kim, S.-W.: The effects of staggered bandgap in the InP/CdSe and CdSe/InP core/shell quantum dots. J. Colloid Interface Sci. 346, 347–351 (2010)CrossRef Kim, S., Park, J., Kim, S., Jung, W., Sung, J., Kim, S.-W.: The effects of staggered bandgap in the InP/CdSe and CdSe/InP core/shell quantum dots. J. Colloid Interface Sci. 346, 347–351 (2010)CrossRef
28.
Zurück zum Zitat Li, L., Reiss, P.: One-pot synthesis of highly luminescent InP/ZnS nanocrystals without precursor injection. J. Am. Chem. Soc. 130(35), 11588–11589 (2008)CrossRef Li, L., Reiss, P.: One-pot synthesis of highly luminescent InP/ZnS nanocrystals without precursor injection. J. Am. Chem. Soc. 130(35), 11588–11589 (2008)CrossRef
29.
Zurück zum Zitat Keating, P.N.: Effect of invariance requirements on the elastic strain energy of crystals with application to the diamond structure. Phys. Rev. 145, 637–645 (1966) Keating, P.N.: Effect of invariance requirements on the elastic strain energy of crystals with application to the diamond structure. Phys. Rev. 145, 637–645 (1966)
30.
Zurück zum Zitat Martin, R.M.: Elastic properties of ZnS structure semiconductors. Phys. Rev. B 1, 4005–4011 (1970)CrossRef Martin, R.M.: Elastic properties of ZnS structure semiconductors. Phys. Rev. B 1, 4005–4011 (1970)CrossRef
31.
Zurück zum Zitat Yadav, D.S., Kumar, C.: Structural properties of binary semiconductors. Int. J. Phys. Sci. 8(21), 1174–1178 (2013) Yadav, D.S., Kumar, C.: Structural properties of binary semiconductors. Int. J. Phys. Sci. 8(21), 1174–1178 (2013)
32.
Zurück zum Zitat Vogl, P., Hjalmarson, H.P., Dow, J.D.: A semi-empirical tight-binding theory of the electronic structure of semiconductors. J. Phys. Chem. Solids 44, 365–378 (1983)CrossRef Vogl, P., Hjalmarson, H.P., Dow, J.D.: A semi-empirical tight-binding theory of the electronic structure of semiconductors. J. Phys. Chem. Solids 44, 365–378 (1983)CrossRef
33.
Zurück zum Zitat Akinci, O., Gurel, H.H., Unlu, H.: Semiempirical tight binding modeling of Cd based II–VI heterostructures for solar cells. Thin Solid Films 511, 684–689 (2006)CrossRef Akinci, O., Gurel, H.H., Unlu, H.: Semiempirical tight binding modeling of Cd based II–VI heterostructures for solar cells. Thin Solid Films 511, 684–689 (2006)CrossRef
34.
Zurück zum Zitat Luo, J.W., Franceschetti, A., Zunger, A.: Nonmonotonic size dependence of the dark/bright exciton splitting in GaAs nanocrystals. Phys. Rev. B 79, 201301(R)–201304(R) (2009)CrossRef Luo, J.W., Franceschetti, A., Zunger, A.: Nonmonotonic size dependence of the dark/bright exciton splitting in GaAs nanocrystals. Phys. Rev. B 79, 201301(R)–201304(R) (2009)CrossRef
35.
Zurück zum Zitat Bester, G., Nair, S., Zunger, A.: Pseudopotential calculation of the excitonic fine structure of million-atom self-assembled \({\rm In}_{1-{\rm x}}{\rm Ga}_{{\rm x}}{\rm As}/{\rm GaAs}\) quantum dots. Phys. Rev. B 67, 161306(R)–161309(R) (2003)CrossRef Bester, G., Nair, S., Zunger, A.: Pseudopotential calculation of the excitonic fine structure of million-atom self-assembled \({\rm In}_{1-{\rm x}}{\rm Ga}_{{\rm x}}{\rm As}/{\rm GaAs}\) quantum dots. Phys. Rev. B 67, 161306(R)–161309(R) (2003)CrossRef
36.
Zurück zum Zitat Korkusinski, M., Hawrylak, P.: Atomistic theory of emission from dark excitons in self-assembled quantum dots. Phys. Rev. B 87, 115310–115320 (2013)CrossRef Korkusinski, M., Hawrylak, P.: Atomistic theory of emission from dark excitons in self-assembled quantum dots. Phys. Rev. B 87, 115310–115320 (2013)CrossRef
37.
Zurück zum Zitat Reboredo, F.A., Franceschetti, A., Zunger, A.: Dark excitons due to direct Coulomb interactions in silicon quantum dots. Phys. Rev. B 61, 13073–13087 (2000)CrossRef Reboredo, F.A., Franceschetti, A., Zunger, A.: Dark excitons due to direct Coulomb interactions in silicon quantum dots. Phys. Rev. B 61, 13073–13087 (2000)CrossRef
38.
Zurück zum Zitat de Oliveira, E.L., Albuquerque, E.L., de Sousa, J.S., Farias, G.A., Peeters, F.M.: Configuration-interaction excitonic absorption in small Si/Ge and Ge/Si core/shell nanocrystals. J. Phys. Chem. C 116, 4399–4407 (2012)CrossRef de Oliveira, E.L., Albuquerque, E.L., de Sousa, J.S., Farias, G.A., Peeters, F.M.: Configuration-interaction excitonic absorption in small Si/Ge and Ge/Si core/shell nanocrystals. J. Phys. Chem. C 116, 4399–4407 (2012)CrossRef
39.
Zurück zum Zitat Brovelli, S., Schaller, R.D., Crooker, S.A., García-Santamaría, F., Chen, Y., Viswanatha, R., Hollingsworth, J.A., Htoon, H., Klimov, V.I.: Nano-engineered electron–hole exchange interaction controls exciton dynamics in core–shell semiconductor nanocrystals. Nat. Commun. 2(280), 1–8 (2011) Brovelli, S., Schaller, R.D., Crooker, S.A., García-Santamaría, F., Chen, Y., Viswanatha, R., Hollingsworth, J.A., Htoon, H., Klimov, V.I.: Nano-engineered electron–hole exchange interaction controls exciton dynamics in core–shell semiconductor nanocrystals. Nat. Commun. 2(280), 1–8 (2011)
40.
Zurück zum Zitat Efros, A.L., Rosen, M., Kuno, M., Nirmal, M., Norris, D.J., Bawendi, M.: Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: dark and bright exciton states. Phys. Rev. B 54(7), 4843–4856 (1996)CrossRef Efros, A.L., Rosen, M., Kuno, M., Nirmal, M., Norris, D.J., Bawendi, M.: Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: dark and bright exciton states. Phys. Rev. B 54(7), 4843–4856 (1996)CrossRef
Metadaten
Titel
Atomistic tight-binding computations in the new class of CdSe/AlP II–VI core/III–V shell nanocrystals
verfasst von
Worasak Sukkabot
Publikationsdatum
13.09.2016
Verlag
Springer US
Erschienen in
Journal of Computational Electronics / Ausgabe 4/2016
Print ISSN: 1569-8025
Elektronische ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-016-0903-5

Weitere Artikel der Ausgabe 4/2016

Journal of Computational Electronics 4/2016 Zur Ausgabe

Neuer Inhalt