Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

Erschienen in: Neural Processing Letters 4/2022

02.06.2022

Attention-Guided Multi-Clue Mining Network for Person Re-identification

verfasst von: Yangbin Yu, Shengrong Yang, Haifeng Hu, Dihu Chen

Erschienen in: Neural Processing Letters | Ausgabe 4/2022

Einloggen, um Zugang zu erhalten
share
TEILEN

Abstract

Attention mechanism is widely employed in Person Re-Identification task to allocate the weight of features. However, most of the existing attention-based methods focus on the region of interest but ignore other potential diverse information, which may cause a sub-optimal results in some situations. To alleviate the problem, we propose a novel Attention-Guided Multi-Clue Mining Network (AMMN). By leveraging the attention mechanism and the dropblock, the model can further emphasize the features other than the attention areas. All of the output features are finally grouped into a multi-clue representation contributed to person identities. Extensive experimental results demonstrate the proposed method outperforms current competitors of relevant methods on several benchmark datasets such as Market1501, DukeMTMC-reID, CUHK03. We also achieve state-of-the-art performance on Occluded datasets.
Literatur
2.
Zurück zum Zitat Deng W, Zheng L,Ye Q, Kang G, Yang Y, Jiao J (2018) Image-image domain adaptation with preserved self-similarity and domain-dissimilarity for person re-identification, In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 994–1003 Deng W, Zheng L,Ye Q, Kang G, Yang Y, Jiao J (2018) Image-image domain adaptation with preserved self-similarity and domain-dissimilarity for person re-identification, In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 994–1003
3.
Zurück zum Zitat Fayyaz M, Yasmin M, Sharif M, Shah JH, Raza M, Iqbal T (2019) Person re-identification with features-based clustering and deep features, Neural Computing and Applications 1–22 Fayyaz M, Yasmin M, Sharif M, Shah JH, Raza M, Iqbal T (2019) Person re-identification with features-based clustering and deep features, Neural Computing and Applications 1–22
4.
Zurück zum Zitat Liao S, Hu Y,Zhu X, Li S. Z. (2015) Person re-identification by local maximal occurrence representation and metric learning, In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2197–2206 Liao S, Hu Y,Zhu X, Li S. Z. (2015) Person re-identification by local maximal occurrence representation and metric learning, In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2197–2206
5.
Zurück zum Zitat Song L, Wang C, Zhang L, Du B, Zhang Q, Huang C, Wang X (2020) Unsupervised domain adaptive re-identification: theory and practice. Pattern Recognit 102:107173 CrossRef Song L, Wang C, Zhang L, Du B, Zhang Q, Huang C, Wang X (2020) Unsupervised domain adaptive re-identification: theory and practice. Pattern Recognit 102:107173 CrossRef
6.
Zurück zum Zitat Liu J,Ni B, Yan Y, Zhou P, Cheng S, Hu J (2018) Pose transferrable person re-identification, In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4099–4108 Liu J,Ni B, Yan Y, Zhou P, Cheng S, Hu J (2018) Pose transferrable person re-identification, In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4099–4108
7.
Zurück zum Zitat Huang H, Chen X, Huang K (2020) Human parsing based alignment with multi-task learning for occluded person re-identification, In: 2020 IEEE international conference on multimedia and expo (ICME), IEEE, pp 1–6 Huang H, Chen X, Huang K (2020) Human parsing based alignment with multi-task learning for occluded person re-identification, In: 2020 IEEE international conference on multimedia and expo (ICME), IEEE, pp 1–6
8.
Zurück zum Zitat Tian M, Yi S, Li H, Li S, Zhang X, Shi J, Yan J, Wang X (2018) Eliminating background-bias for robust person re-identification, In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 5794–5803 Tian M, Yi S, Li H, Li S, Zhang X, Shi J, Yan J, Wang X (2018) Eliminating background-bias for robust person re-identification, In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 5794–5803
9.
Zurück zum Zitat Huang Y, Zha Z.-J., Fu X, Zhang W (2019) Illumination-invariant person re-identification, In: Proceedings of the 27th ACM international conference on multimedia, pp 365–373 Huang Y, Zha Z.-J., Fu X, Zhang W (2019) Illumination-invariant person re-identification, In: Proceedings of the 27th ACM international conference on multimedia, pp 365–373
10.
Zurück zum Zitat Sun X, Zheng L (2019) Dissecting person re-identification from the viewpoint of viewpoint, In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 608–617 Sun X, Zheng L (2019) Dissecting person re-identification from the viewpoint of viewpoint, In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 608–617
11.
Zurück zum Zitat Wang G, Yuan Y, Chen X, Li J, Zhou X (2018) Learning discriminative features with multiple granularities for person re-identification, In: Proceedings of the 26th ACM international conference on Multimedia, pp 274–282 Wang G, Yuan Y, Chen X, Li J, Zhou X (2018) Learning discriminative features with multiple granularities for person re-identification, In: Proceedings of the 26th ACM international conference on Multimedia, pp 274–282
12.
Zurück zum Zitat Ge Y, Li Z, Zhao H, Yin G, Yi S, Wang X, et al., (2018) Fd-gan: Pose-guided feature distilling gan for robust person re-identification, In: Advances in neural information processing systems, pp 1222–1233 Ge Y, Li Z, Zhao H, Yin G, Yi S, Wang X, et al., (2018) Fd-gan: Pose-guided feature distilling gan for robust person re-identification, In: Advances in neural information processing systems, pp 1222–1233
13.
Zurück zum Zitat Zhou J, Roy S. K., Fang P, Harandi M, Petersson L (2020) Cross-correlated attention networks for person re-identification, Image and Vision Computing 103931 Zhou J, Roy S. K., Fang P, Harandi M, Petersson L (2020) Cross-correlated attention networks for person re-identification, Image and Vision Computing 103931
14.
15.
Zurück zum Zitat Huang Y, Lian S, Zhang S, Hu H, Chen D, Su T Three-dimension transmissible attention network for person re-identification, IEEE transactions on circuits and systems for video technology Huang Y, Lian S, Zhang S, Hu H, Chen D, Su T Three-dimension transmissible attention network for person re-identification, IEEE transactions on circuits and systems for video technology
16.
Zurück zum Zitat Xie B, Wu X, Zhang S, Zhao S, Li M Learning diverse features with part-level resolution for person re-identification, arXiv preprint arXiv:​2001.​07442 Xie B, Wu X, Zhang S, Zhao S, Li M Learning diverse features with part-level resolution for person re-identification, arXiv preprint arXiv:​2001.​07442
17.
Zurück zum Zitat Chen T, Ding S, Xie J, Yuan Y, Chen W, Yang Y, Ren Z, Wang Z (2019) Abd-net: Attentive but diverse person re-identification, In: Proceedings of the IEEE international conference on computer vision, pp 8351–8361 Chen T, Ding S, Xie J, Yuan Y, Chen W, Yang Y, Ren Z, Wang Z (2019) Abd-net: Attentive but diverse person re-identification, In: Proceedings of the IEEE international conference on computer vision, pp 8351–8361
18.
Zurück zum Zitat Song C, Huang Y, Ouyang W, Wang L (2018) Mask-guided contrastive attention model for person re-identification, In: proceedings of the IEEE conference on computer vision and pattern recognition, pp 1179–1188 Song C, Huang Y, Ouyang W, Wang L (2018) Mask-guided contrastive attention model for person re-identification, In: proceedings of the IEEE conference on computer vision and pattern recognition, pp 1179–1188
19.
Zurück zum Zitat W. Li, X. Zhu, S. Gong (2018) Harmonious attention network for person re-identification, In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2285–2294 W. Li, X. Zhu, S. Gong (2018) Harmonious attention network for person re-identification, In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2285–2294
20.
Zurück zum Zitat Hu H-M, Fang W, Li B, Tian Q (2018) An adaptive multi-projection metric learning for person re-identification across non-overlapping cameras. IEEE Trans Circuits Syst Video Technol 29(9):2809–2821 CrossRef Hu H-M, Fang W, Li B, Tian Q (2018) An adaptive multi-projection metric learning for person re-identification across non-overlapping cameras. IEEE Trans Circuits Syst Video Technol 29(9):2809–2821 CrossRef
21.
Zurück zum Zitat Chen Y, Zhu X, Gong S (2017) Person re-identification by deep learning multi-scale representations, In: Proceedings of the IEEE international conference on computer vision workshops, pp 2590–2600 Chen Y, Zhu X, Gong S (2017) Person re-identification by deep learning multi-scale representations, In: Proceedings of the IEEE international conference on computer vision workshops, pp 2590–2600
22.
Zurück zum Zitat Qian X, Fu Y, Jiang Y-G, Xiang T, Xue X (2017) Multi-scale deep learning architectures for person re-identification, In: Proceedings of the IEEE international conference on computer vision, pp 5399–5408 Qian X, Fu Y, Jiang Y-G, Xiang T, Xue X (2017) Multi-scale deep learning architectures for person re-identification, In: Proceedings of the IEEE international conference on computer vision, pp 5399–5408
23.
Zurück zum Zitat Ghiasi G, Lin TY, Le QV (2018) Dropblock: A regularization method for convolutional networks, Adv Neural Inform Proc Syst, pp 10727–10737 Ghiasi G, Lin TY, Le QV (2018) Dropblock: A regularization method for convolutional networks, Adv Neural Inform Proc Syst, pp 10727–10737
24.
Zurück zum Zitat Dai Z, Chen M, Gu X, Zhu S, Tan P (2019) Batch dropblock network for person re-identification and beyond, In: Proceedings of the IEEE international conference on computer vision, pp 3691–3701 Dai Z, Chen M, Gu X, Zhu S, Tan P (2019) Batch dropblock network for person re-identification and beyond, In: Proceedings of the IEEE international conference on computer vision, pp 3691–3701
25.
Zurück zum Zitat Zhou K, Yang Y, Cavallaro A, Xiang T (2019) Omni-scale feature learning for person re-identification, In: Proceedings of the IEEE international conference on computer vision, pp 3702–3712 Zhou K, Yang Y, Cavallaro A, Xiang T (2019) Omni-scale feature learning for person re-identification, In: Proceedings of the IEEE international conference on computer vision, pp 3702–3712
26.
Zurück zum Zitat Zhang S, Zhang L, Wang W, Wu X Asnet: Asymmetrical network for learning rich features in person re-identification, IEEE signal processing letters Zhang S, Zhang L, Wang W, Wu X Asnet: Asymmetrical network for learning rich features in person re-identification, IEEE signal processing letters
27.
Zurück zum Zitat Munir A, Martinel N, Micheloni C (2020), Multi branch siamese network for person re-identification, In: 2020 IEEE international conference on image processing (ICIP), IEEE, pp 2351–2355 Munir A, Martinel N, Micheloni C (2020), Multi branch siamese network for person re-identification, In: 2020 IEEE international conference on image processing (ICIP), IEEE, pp 2351–2355
28.
Zurück zum Zitat Zheng L, Shen L, Tian L, Wang S, Wang J, Tian Q (2015) Scalable person re-identification: A benchmark, In: Proceedings of the IEEE international conference on computer vision, pp 1116–1124 Zheng L, Shen L, Tian L, Wang S, Wang J, Tian Q (2015) Scalable person re-identification: A benchmark, In: Proceedings of the IEEE international conference on computer vision, pp 1116–1124
29.
Zurück zum Zitat Zheng Z, Zheng L, Yang Y (2017) Unlabeled samples generated by gan improve the person re-identification baseline in vitro, In: Proceedings of the IEEE international conference on computer vision pp 3754–3762 Zheng Z, Zheng L, Yang Y (2017) Unlabeled samples generated by gan improve the person re-identification baseline in vitro, In: Proceedings of the IEEE international conference on computer vision pp 3754–3762
30.
Zurück zum Zitat Li W, Zhao R, Xiao T, Wang X (2014) Deepreid: Deep filter pairing neural network for person re-identification, In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 152–159 Li W, Zhao R, Xiao T, Wang X (2014) Deepreid: Deep filter pairing neural network for person re-identification, In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 152–159
31.
Zurück zum Zitat Wang GA, Yang S, Liu H, Wang Z, Yang Y, Wang S, Yu G, Zhou E, Sun J (2020) High-order information matters: Learning relation and topology for occluded person re-identification, In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 6449–6458 Wang GA, Yang S, Liu H, Wang Z, Yang Y, Wang S, Yu G, Zhou E, Sun J (2020) High-order information matters: Learning relation and topology for occluded person re-identification, In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 6449–6458
32.
Zurück zum Zitat Miao J, Wu Y, Liu P, Ding Y, Yang Y (2019) Pose-guided feature alignment for occluded person re-identification, In: ICCV Miao J, Wu Y, Liu P, Ding Y, Yang Y (2019) Pose-guided feature alignment for occluded person re-identification, In: ICCV
33.
Zurück zum Zitat Zhao L, Li X, Zhuang Y, Wang J (2017) Deeply-learned part-aligned representations for person re-identification, In: Proceedings of the IEEE international conference on computer vision, pp 3219–3228 Zhao L, Li X, Zhuang Y, Wang J (2017) Deeply-learned part-aligned representations for person re-identification, In: Proceedings of the IEEE international conference on computer vision, pp 3219–3228
34.
Zurück zum Zitat Chen L, Zhang H, Xiao J, Nie L, Shao J, Liu W, Chua TS (2017) Sca-cnn: Spatial and channel-wise attention in convolutional networks for image captioning, In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 5659–5667 Chen L, Zhang H, Xiao J, Nie L, Shao J, Liu W, Chua TS (2017) Sca-cnn: Spatial and channel-wise attention in convolutional networks for image captioning, In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 5659–5667
35.
Zurück zum Zitat Chen X, Fu C, Zhao Y, Zheng F, Song J, Ji R, Yang Y (2020) Salience-guided cascaded suppression network for person re-identification, In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 3300–3310 Chen X, Fu C, Zhao Y, Zheng F, Song J, Ji R, Yang Y (2020) Salience-guided cascaded suppression network for person re-identification, In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 3300–3310
36.
Zurück zum Zitat Wang X, Shrivastava A, Gupta A (2017) A-fast-rcnn: Hard positive generation via adversary for object detection, In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2606–2615 Wang X, Shrivastava A, Gupta A (2017) A-fast-rcnn: Hard positive generation via adversary for object detection, In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2606–2615
38.
Zurück zum Zitat Wen Y, Zhang K, Li Z, Qiao Y (2016) A discriminative feature learning approach for deep face recognition, In: European conference on computer vision, Springer, pp 499–515 Wen Y, Zhang K, Li Z, Qiao Y (2016) A discriminative feature learning approach for deep face recognition, In: European conference on computer vision, Springer, pp 499–515
39.
Zurück zum Zitat Wang C, Zhang Q, Huang C, Liu W, Wang X (2018) Mancs: A multi-task attentional network with curriculum sampling for person re-identification, In: Proceedings of the European conference on computer vision (ECCV), pp 365–381 Wang C, Zhang Q, Huang C, Liu W, Wang X (2018) Mancs: A multi-task attentional network with curriculum sampling for person re-identification, In: Proceedings of the European conference on computer vision (ECCV), pp 365–381
40.
Zurück zum Zitat Zheng M, Karanam S, Wu Z, Radke RJ (2019) Re-identification with consistent attentive siamese networks, In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 5735–5744 Zheng M, Karanam S, Wu Z, Radke RJ (2019) Re-identification with consistent attentive siamese networks, In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 5735–5744
41.
42.
Zurück zum Zitat Wu X, Xie B, Zhao S, Zhang S, Xiao Y, Li M Diversity-achieving slow-dropblock network for person re-identification, arXiv preprint arXiv:​2002.​04414 Wu X, Xie B, Zhao S, Zhang S, Xiao Y, Li M Diversity-achieving slow-dropblock network for person re-identification, arXiv preprint arXiv:​2002.​04414
43.
Zurück zum Zitat Sun Y, Zheng L, Yang Y, Tian Q, Wang S (2018) Beyond part models: Person retrieval with refined part pooling (and a strong convolutional baseline), In: Proceedings of the European conference on computer vision (ECCV), pp 480–496 Sun Y, Zheng L, Yang Y, Tian Q, Wang S (2018) Beyond part models: Person retrieval with refined part pooling (and a strong convolutional baseline), In: Proceedings of the European conference on computer vision (ECCV), pp 480–496
44.
Zurück zum Zitat Cai H,Wang Z, Cheng J (2019) Multi-scale body-part mask guided attention for person re-identification, In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp 0–0 Cai H,Wang Z, Cheng J (2019) Multi-scale body-part mask guided attention for person re-identification, In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp 0–0
45.
Zurück zum Zitat Zhong Z, Zheng L, Cao D, Li S (2017) Re-ranking person re-identification with k-reciprocal encoding, In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1318–1327 Zhong Z, Zheng L, Cao D, Li S (2017) Re-ranking person re-identification with k-reciprocal encoding, In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1318–1327
46.
Zurück zum Zitat Zheng W.-S., Li X, Xiang T, Liao S, Lai J, Gong S (2015) Partial person re-identification, In: Proceedings of the IEEE International conference on computer vision, pp 4678–4686 Zheng W.-S., Li X, Xiang T, Liao S, Lai J, Gong S (2015) Partial person re-identification, In: Proceedings of the IEEE International conference on computer vision, pp 4678–4686
47.
Zurück zum Zitat He L, Liang J, Li H, Sun Z (2018) Deep spatial feature reconstruction for partial person re-identification: Alignment-free approach, In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 7073–7082 He L, Liang J, Li H, Sun Z (2018) Deep spatial feature reconstruction for partial person re-identification: Alignment-free approach, In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 7073–7082
49.
Zurück zum Zitat Suh Y, Wang J, Tang S, Mei T, Mu Lee K (2018) Part-aligned bilinear representations for person re-identification, In: Proceedings of the European conference on computer vision (ECCV), pp 402–419 Suh Y, Wang J, Tang S, Mei T, Mu Lee K (2018) Part-aligned bilinear representations for person re-identification, In: Proceedings of the European conference on computer vision (ECCV), pp 402–419
50.
Zurück zum Zitat He L, Wang Y, Liu W, Zhao H, Sun Z, Feng J (2019) Foreground-aware pyramid reconstruction for alignment-free occluded person re-identification, In: Proceedings of the IEEE international conference on computer vision, pp 8450–8459 He L, Wang Y, Liu W, Zhao H, Sun Z, Feng J (2019) Foreground-aware pyramid reconstruction for alignment-free occluded person re-identification, In: Proceedings of the IEEE international conference on computer vision, pp 8450–8459
51.
Zurück zum Zitat Miao J, Wu Y, Liu P, Ding Y, Yang Y (2019) Pose-guided feature alignment for occluded person re-identification, In: Proceedings of the IEEE international conference on computer vision, pp 542–551 Miao J, Wu Y, Liu P, Ding Y, Yang Y (2019) Pose-guided feature alignment for occluded person re-identification, In: Proceedings of the IEEE international conference on computer vision, pp 542–551
52.
Zurück zum Zitat He L, Liu W (2020) Guided saliency feature learning for person re-identification in crowded scenes, In: European conference on computer vision, Springer, pp 357–373 He L, Liu W (2020) Guided saliency feature learning for person re-identification in crowded scenes, In: European conference on computer vision, Springer, pp 357–373
Metadaten
Titel
Attention-Guided Multi-Clue Mining Network for Person Re-identification
verfasst von
Yangbin Yu
Shengrong Yang
Haifeng Hu
Dihu Chen
Publikationsdatum
02.06.2022
Verlag
Springer US
Erschienen in
Neural Processing Letters / Ausgabe 4/2022
Print ISSN: 1370-4621
Elektronische ISSN: 1573-773X
DOI
https://doi.org/10.1007/s11063-022-10757-1

Weitere Artikel der Ausgabe 4/2022

Neural Processing Letters 4/2022 Zur Ausgabe