Skip to main content
Erschienen in:

06.01.2023

Attention Mechanism Enhanced Multi-layer Edge Perception Network for Deep Semantic Medical Segmentation

verfasst von: Meijun Sun, Pengfei Li, Jinchang Ren, Zheng Wang

Erschienen in: Cognitive Computation | Ausgabe 1/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Existing deep learning–based medical image segmentation methods have achieved gratifying progress, but they still suffer from the coarse boundaries with similar pixels of target. Because the boundary of medical images becomes blurred and the gradient is inconsistent and not apparent, high-resolution images are needed for more accurate segmentation. To tackle these problems, we propose an efficient multi-layer edge perception U-shaped structure for medical image segmentation. In this paper, we present a multi-layer edge perception network for describing more precise edges of medical targets. The U-structure architecture of our network embeds a multi-layer edge perception module, which has the following advantages: (1) connecting different scales and channels to help the network better learn the feature of the medical image via the combination of a pyramid structure and several edge perception modules; (2) a new downsampling block is designed to improve the network’s sensibility to the target boundary. We demonstrate the effectiveness of the proposed model on the DRIVE datasets, and achieve a Dice gain of 0.841 over other models. In this paper, we propose an efficient multi-layer edge perception U-shaped structure for medical image segmentation. A large number of experiments show that the performance of our proposed multi-layer edge perception U-shaped network is significantly better than the traditional segmented network structure.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Cordts M, Omran M, Ramos S, Rehfeld T, Enzweiler M, Benenson R, Franke U, Roth S, Schiele B. The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016. Cordts M, Omran M, Ramos S, Rehfeld T, Enzweiler M, Benenson R, Franke U, Roth S, Schiele B. The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016.
4.
Zurück zum Zitat Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2015. Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2015.
5.
Zurück zum Zitat Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: Navab N, Hornegger J, Wells WM, Frangi AF, editors. Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015. Cham: Springer International Publishing; 2015. p. 234–41. Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: Navab N, Hornegger J, Wells WM, Frangi AF, editors. Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015. Cham: Springer International Publishing; 2015. p. 234–41.
7.
Zurück zum Zitat Zhou Z. M. M. Rahman Siddiquee, N. Tajbakhsh, J. Liang, Unet++: A nested u-net architecture for medical image segmentation. In: Stoyanov D, Taylor Z, Carneiro G, Syeda-Mahmood T, Martel A, Maier-Hein L, Tavares JMR, Bradley A, Papa JP, Belagiannis V, Nascimento JC, Lu Z, Conjeti S, Moradi M, Greenspan H, Madabhushi A, editors. Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. Cham: Springer International Publishing; 2018. p. 3–11.CrossRef Zhou Z. M. M. Rahman Siddiquee, N. Tajbakhsh, J. Liang, Unet++: A nested u-net architecture for medical image segmentation. In: Stoyanov D, Taylor Z, Carneiro G, Syeda-Mahmood T, Martel A, Maier-Hein L, Tavares JMR, Bradley A, Papa JP, Belagiannis V, Nascimento JC, Lu Z, Conjeti S, Moradi M, Greenspan H, Madabhushi A, editors. Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. Cham: Springer International Publishing; 2018. p. 3–11.CrossRef
9.
Zurück zum Zitat Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017. Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017.
12.
Zurück zum Zitat Chen L-C, Zhu Y, Papandreou G, Schroff F, Adam H. Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of the European Conference on Computer Vision (ECCV). 2018. Chen L-C, Zhu Y, Papandreou G, Schroff F, Adam H. Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of the European Conference on Computer Vision (ECCV). 2018.
13.
Zurück zum Zitat Oktay O, Schlemper J, Folgoc LL, Lee M, Heinrich M, Misawa K, Mori K, McDonagh S, Hammerla NY, Kainz B, Glocker B, Rueckert D. Attention u-net: learning where to look for the pancreas. arXiv:1804.03999 [Preprint]. 2018. Available from: http://arxiv.org/abs/1804.03999. Oktay O, Schlemper J, Folgoc LL, Lee M, Heinrich M, Misawa K, Mori K, McDonagh S, Hammerla NY, Kainz B, Glocker B, Rueckert D. Attention u-net: learning where to look for the pancreas. arXiv:1804.03999 [Preprint]. 2018. Available from: http://​arxiv.​org/​abs/​1804.​03999.
14.
Zurück zum Zitat Hu J, Shen L, Sun G. Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2018. Hu J, Shen L, Sun G. Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2018.
16.
Zurück zum Zitat Huang H, Lin L, Tong R, Hu H, Zhang Q, Iwamoto Y, Han X, Chen Y-W, Wu J. Unet 3+: A full-scale connected Unet for medical image segmentation. In: ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 2020. p. 1055–9. https://doi.org/10.1109/ICASSP40776.2020.9053405. Huang H, Lin L, Tong R, Hu H, Zhang Q, Iwamoto Y, Han X, Chen Y-W, Wu J. Unet 3+: A full-scale connected Unet for medical image segmentation. In: ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 2020. p. 1055–9. https://​doi.​org/​10.​1109/​ICASSP40776.​2020.​9053405.
17.
Zurück zum Zitat Salehi SSM, Erdogmus D, Gholipour A. Tversky loss function for image segmentation using 3d fully convolutional deep networks. In: Wang Q, Shi Y, Suk H-I, Suzuki K, editors. Machine Learning in Medical Imaging. Cham: Springer International Publishing; 2017. p. 379–87.CrossRef Salehi SSM, Erdogmus D, Gholipour A. Tversky loss function for image segmentation using 3d fully convolutional deep networks. In: Wang Q, Shi Y, Suk H-I, Suzuki K, editors. Machine Learning in Medical Imaging. Cham: Springer International Publishing; 2017. p. 379–87.CrossRef
19.
20.
Zurück zum Zitat Lin G, Milan A, Shen C, Reid I. Refinenet: Multi-path refinement networks for high-resolution semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017. Lin G, Milan A, Shen C, Reid I. Refinenet: Multi-path refinement networks for high-resolution semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017.
21.
Zurück zum Zitat He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016.
22.
Zurück zum Zitat Cho K, van Merrienboer B, Gulcehre C, Bahdanau D, Bougares F, Schwenk H, Bengio Y. Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv:1406.1078 [Preprint]. 2014. Available from: http://arxiv.org/abs/1406.1078. Cho K, van Merrienboer B, Gulcehre C, Bahdanau D, Bougares F, Schwenk H, Bengio Y. Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv:1406.1078 [Preprint]. 2014. Available from: http://​arxiv.​org/​abs/​1406.​1078.
24.
Zurück zum Zitat Luo P, Wang G, Lin L, Wang X. Deep dual learning for semantic image segmentation. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV). 2017. Luo P, Wang G, Lin L, Wang X. Deep dual learning for semantic image segmentation. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV). 2017.
26.
Zurück zum Zitat Pohlen T, Hermans A, Mathias M, Leibe B. Full-resolution residual networks for semantic segmentation in street scenes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017. Pohlen T, Hermans A, Mathias M, Leibe B. Full-resolution residual networks for semantic segmentation in street scenes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017.
27.
Zurück zum Zitat Peng C, Zhang X, Yu G, Luo G, Sun J. Large kernel matters – improve semantic segmentation by global convolutional network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017. Peng C, Zhang X, Yu G, Luo G, Sun J. Large kernel matters – improve semantic segmentation by global convolutional network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017.
28.
Zurück zum Zitat Amirul Islam M, Rochan M, Bruce NDB, Wang Y. Gated feedback refinement network for dense image labeling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017. Amirul Islam M, Rochan M, Bruce NDB, Wang Y. Gated feedback refinement network for dense image labeling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017.
29.
Zurück zum Zitat Hoang TM, Zhou, Fan JY. Image compression with encoder-decoder matched semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops. 2020. Hoang TM, Zhou, Fan JY. Image compression with encoder-decoder matched semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops. 2020.
31.
Zurück zum Zitat Wu Z, Su L, Huang Q. Cascaded partial decoder for fast and accurate salient object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2019. Wu Z, Su L, Huang Q. Cascaded partial decoder for fast and accurate salient object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2019.
33.
Zurück zum Zitat Wang F, Jiang M, Qian C, Yang S, Li C, Zhang H, Wang X, Tang X. Residual attention network for image classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017. Wang F, Jiang M, Qian C, Yang S, Li C, Zhang H, Wang X, Tang X. Residual attention network for image classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017.
35.
Zurück zum Zitat Lee Y, Park J. Centermask: Real-time anchor-free instance segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2020. Lee Y, Park J. Centermask: Real-time anchor-free instance segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2020.
36.
Zurück zum Zitat Huang G, Liu Z, van der Maaten L, Weinberger KQ. Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017. Huang G, Liu Z, van der Maaten L, Weinberger KQ. Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017.
38.
Zurück zum Zitat Cortes C, Gonzalvo X, Kuznetsov V, Mohri M, Yang S. AdaNet: Adaptive structural learning of artificial neural networks. In: Precup D, Teh YW, editors. Proceedings of the 34th International Conference on Machine Learning, vol. 70 of Proceedings of Machine Learning Research. PMLR; 2017. p. 874–83. http://proceedings.mlr.press/v70/cortes17a.html. Cortes C, Gonzalvo X, Kuznetsov V, Mohri M, Yang S. AdaNet: Adaptive structural learning of artificial neural networks. In: Precup D, Teh YW, editors. Proceedings of the 34th International Conference on Machine Learning, vol. 70 of Proceedings of Machine Learning Research. PMLR; 2017. p. 874–83. http://​proceedings.​mlr.​press/​v70/​cortes17a.​html.
39.
Zurück zum Zitat Alom MZ, Hasan M, Yakopcic C, Taha TM, Asari VK. Recurrent residual convolutional neural network based on u-net (r2u-net) for medical image segmentation. arXiv:1802.06955 [Preprint]. 2018. Available from: http://arxiv.org/abs/1802.06955. Alom MZ, Hasan M, Yakopcic C, Taha TM, Asari VK. Recurrent residual convolutional neural network based on u-net (r2u-net) for medical image segmentation. arXiv:1802.06955 [Preprint]. 2018. Available from: http://​arxiv.​org/​abs/​1802.​06955.
Metadaten
Titel
Attention Mechanism Enhanced Multi-layer Edge Perception Network for Deep Semantic Medical Segmentation
verfasst von
Meijun Sun
Pengfei Li
Jinchang Ren
Zheng Wang
Publikationsdatum
06.01.2023
Verlag
Springer US
Erschienen in
Cognitive Computation / Ausgabe 1/2023
Print ISSN: 1866-9956
Elektronische ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-022-10094-4