Skip to main content
Erschienen in:

27.12.2022 | Original Research

Attentive deep neural networks for legal document retrieval

verfasst von: Ha-Thanh Nguyen, Manh-Kien Phi, Xuan-Bach Ngo, Vu Tran, Le-Minh Nguyen, Minh-Phuong Tu

Erschienen in: Artificial Intelligence and Law | Ausgabe 1/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Legal text retrieval serves as a key component in a wide range of legal text processing tasks such as legal question answering, legal case entailment, and statute law retrieval. The performance of legal text retrieval depends, to a large extent, on the representation of text, both query and legal documents. Based on good representations, a legal text retrieval model can effectively match the query to its relevant documents. Because legal documents often contain long articles and only some parts are relevant to queries, it is quite a challenge for existing models to represent such documents. In this paper, we study the use of attentive neural network-based text representation for statute law document retrieval. We propose a general approach using deep neural networks with attention mechanisms. Based on it, we develop two hierarchical architectures with sparse attention to represent long sentences and articles, and we name them Attentive CNN and Paraformer. The methods are evaluated on datasets of different sizes and characteristics in English, Japanese, and Vietnamese. Experimental results show that: (i) Attentive neural methods substantially outperform non-neural methods in terms of retrieval performance across datasets and languages; (ii) Pretrained transformer-based models achieve better accuracy on small datasets at the cost of high computational complexity while lighter weight Attentive CNN achieves better accuracy on large datasets; and (iii) Our proposed Paraformer outperforms state-of-the-art methods on COLIEE dataset, achieving the highest recall and F2 scores in the top-N retrieval task.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Bach NX, Duy TK, Phuong TM (2019) A POS tagging model for Vietnamese social media text using BiLSTM-CRF with rich features. In: Proceedings of the 16th pacific rim international conference on artificial intelligence (pricai), part iii, pp 206–219 Bach NX, Duy TK, Phuong TM (2019) A POS tagging model for Vietnamese social media text using BiLSTM-CRF with rich features. In: Proceedings of the 16th pacific rim international conference on artificial intelligence (pricai), part iii, pp 206–219
Zurück zum Zitat Bach NX, Thuy NTT, Chien DB, Duy TK, Hien TM, Phuong TM (2019) Reference extraction from Vietnamese legal documents. In: Proceedings of the 10th international symposium on information and communication technology (soict), pp 486–493 Bach NX, Thuy NTT, Chien DB, Duy TK, Hien TM, Phuong TM (2019) Reference extraction from Vietnamese legal documents. In: Proceedings of the 10th international symposium on information and communication technology (soict), pp 486–493
Zurück zum Zitat Brown TB, Mann B, Ryder N, Subbiah M, Kaplan J, Dhariwal P et al. (2020). Language models are few-shot learners. arXiv:2005.14165 Brown TB, Mann B, Ryder N, Subbiah M, Kaplan J, Dhariwal P et al. (2020). Language models are few-shot learners. arXiv:​2005.​14165
Zurück zum Zitat Chalkidis I, Kampas D (2019) Deep learning in law: early adaptation and legal word embeddings trained on large corpora. Artif Intell Law 27(2):171–198CrossRef Chalkidis I, Kampas D (2019) Deep learning in law: early adaptation and legal word embeddings trained on large corpora. Artif Intell Law 27(2):171–198CrossRef
Zurück zum Zitat Chen Q, Zhu X, Ling ZH, Wei S, Jiang H, Inkpen D (2017) Enhanced lstm for natural language inference. In: Proceedings of the 55th annual meeting of the association for computational linguistics (volume 1: Long papers), pp 1657–1668 Chen Q, Zhu X, Ling ZH, Wei S, Jiang H, Inkpen D (2017) Enhanced lstm for natural language inference. In: Proceedings of the 55th annual meeting of the association for computational linguistics (volume 1: Long papers), pp 1657–1668
Zurück zum Zitat Conneau A, Khandelwal K, Goyal N, Chaudhary V, Wenzek G, Guzmán F, Stoyanov V (2019) Unsupervised cross-lingual representation learning at scale. arXiv:1911.02116 Conneau A, Khandelwal K, Goyal N, Chaudhary V, Wenzek G, Guzmán F, Stoyanov V (2019) Unsupervised cross-lingual representation learning at scale. arXiv:​1911.​02116
Zurück zum Zitat Devlin J, Chang MW, Lee K, Toutanova K (2019) BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 conference of the north American chapter of the association for computational linguistics: human language technologies, volume 1 (long and short papers), pp 4171–4186. Minneapolis, Minnesota Association for Computational Linguistics Devlin J, Chang MW, Lee K, Toutanova K (2019) BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 conference of the north American chapter of the association for computational linguistics: human language technologies, volume 1 (long and short papers), pp 4171–4186. Minneapolis, Minnesota Association for Computational Linguistics
Zurück zum Zitat Frank S, Dhivya C, Kanika M, Jinane H, Andrew V, Hiroko B, John H (2021) A pentapus grapples with legal reasoning. Coliee workshop in icail, pp 78–83 Frank S, Dhivya C, Kanika M, Jinane H, Andrew V, Hiroko B, John H (2021) A pentapus grapples with legal reasoning. Coliee workshop in icail, pp 78–83
Zurück zum Zitat Huang PS, He X, Gao J, Deng L, Acero A, Heck L (2013) Learning deep structured semantic models for web search using clickthrough data. In: Proceedings of the 22nd acm international conference on information & knowledge management, pp 2333–2338 Huang PS, He X, Gao J, Deng L, Acero A, Heck L (2013) Learning deep structured semantic models for web search using clickthrough data. In: Proceedings of the 22nd acm international conference on information & knowledge management, pp 2333–2338
Zurück zum Zitat Husa VJM (2016) Future of legal families. Oxford handbooks online: scholarly research reviews. Oxford University Press, Oxford Husa VJM (2016) Future of legal families. Oxford handbooks online: scholarly research reviews. Oxford University Press, Oxford
Zurück zum Zitat Ito S (2008) Lecture series on ultimate facts. Shojihomu (in Japanese) Ito S (2008) Lecture series on ultimate facts. Shojihomu (in Japanese)
Zurück zum Zitat Kim MY, Rabelo J, Okeke K, Goebel R (2022) Legal information retrieval and entailment based on bm25, transformer and semantic thesaurus methods. Rev. Socionetw. Strateg. 16(1):157–174CrossRef Kim MY, Rabelo J, Okeke K, Goebel R (2022) Legal information retrieval and entailment based on bm25, transformer and semantic thesaurus methods. Rev. Socionetw. Strateg. 16(1):157–174CrossRef
Zurück zum Zitat Kim Y (2014) Convolutional neural networks for sentence classification. In: Proceedings of the 2014 conference on empirical methods in natural language processing (emnlp), pp 1746–1751 Kim Y (2014) Convolutional neural networks for sentence classification. In: Proceedings of the 2014 conference on empirical methods in natural language processing (emnlp), pp 1746–1751
Zurück zum Zitat Kowalski R, Datoo A (2021) Logical english meets legal english for swaps and derivatives. Artif Intell Law 30:163–197CrossRef Kowalski R, Datoo A (2021) Logical english meets legal english for swaps and derivatives. Artif Intell Law 30:163–197CrossRef
Zurück zum Zitat Lewis M, Liu Y, Goyal N, Ghazvininejad M, Mohamed A, Levy O, Zettlemoyer L (2019) Bart: denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension. arXiv:1910.13461 Lewis M, Liu Y, Goyal N, Ghazvininejad M, Mohamed A, Levy O, Zettlemoyer L (2019) Bart: denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension. arXiv:​1910.​13461
Zurück zum Zitat Luhn HP (1957) A statistical approach to mechanized encoding and searching of literary information. IBM J Res Dev 1(4):309–317MathSciNetCrossRef Luhn HP (1957) A statistical approach to mechanized encoding and searching of literary information. IBM J Res Dev 1(4):309–317MathSciNetCrossRef
Zurück zum Zitat Martins A, Astudillo R (2016) From softmax to sparsemax: a sparse model of attention and multi-label classification. International conference on machine learning, pp 1614–1623 Martins A, Astudillo R (2016) From softmax to sparsemax: a sparse model of attention and multi-label classification. International conference on machine learning, pp 1614–1623
Zurück zum Zitat Masaharu Y, Youta S, Yasuhiro A (2021) Bert-based ensemble methods for information retrieval and legal textual entailment in coliee statute law task. Coliee workshop in icail, pp 78–83 Masaharu Y, Youta S, Yasuhiro A (2021) Bert-based ensemble methods for information retrieval and legal textual entailment in coliee statute law task. Coliee workshop in icail, pp 78–83
Zurück zum Zitat Mikolov T, Grave E, Bojanowski P, Puhrsch C, Joulin A (2018) Advances in pre-training distributed word representations. In: Proceedings of the international conference on language resources and evaluation (lrec 2018) Mikolov T, Grave E, Bojanowski P, Puhrsch C, Joulin A (2018) Advances in pre-training distributed word representations. In: Proceedings of the international conference on language resources and evaluation (lrec 2018)
Zurück zum Zitat Mikolov T, Kombrink S, Burget L, Černockỳ J, Khudanpur S (2011) Extensions of recurrent neural network language model. 2011 ieee international conference on acoustics, speech and signal processing (icassp), pp 5528–5531 Mikolov T, Kombrink S, Burget L, Černockỳ J, Khudanpur S (2011) Extensions of recurrent neural network language model. 2011 ieee international conference on acoustics, speech and signal processing (icassp), pp 5528–5531
Zurück zum Zitat Mueller J, Thyagarajan A (2016) Siamese recurrent architectures for learning sentence similarity. In: thirtieth aaai conference on artificial intelligence Mueller J, Thyagarajan A (2016) Siamese recurrent architectures for learning sentence similarity. In: thirtieth aaai conference on artificial intelligence
Zurück zum Zitat Nguyen HT, Nguyen PM, Vuong THY, Bui QM, Nguyen CM, Dang BT, Satoh K (2021) Jnlp team: deep learning approaches for legal processing tasks in coliee 2021. arXiv:2106.13405 Nguyen HT, Nguyen PM, Vuong THY, Bui QM, Nguyen CM, Dang BT, Satoh K (2021) Jnlp team: deep learning approaches for legal processing tasks in coliee 2021. arXiv:​2106.​13405
Zurück zum Zitat Nguyen HT, Nguyen VH, Vu VA (2017) A knowledge representation for vietnamese legal document system. In: 2017 9th international conference on knowledge and systems engineering (kse), pp 30–35 Nguyen HT, Nguyen VH, Vu VA (2017) A knowledge representation for vietnamese legal document system. In: 2017 9th international conference on knowledge and systems engineering (kse), pp 30–35
Zurück zum Zitat Nguyen HT, Tran V, Nguyen PM, Vuong THY, Bui QM, Nguyen CM, Satoh K (2021) Paralaw nets–cross-lingual sentence-level pretraining for legal text processing. arXiv:2106.13403 Nguyen HT, Tran V, Nguyen PM, Vuong THY, Bui QM, Nguyen CM, Satoh K (2021) Paralaw nets–cross-lingual sentence-level pretraining for legal text processing. arXiv:​2106.​13403
Zurück zum Zitat Nguyen HT, Vuong HYT, Nguyen PM, Dang BT, Bui QM, Vu ST, Nguyen ML (2020). Jnlp team: deep learning for legal processing in coliee 2020. arXiv:2011.08071 Nguyen HT, Vuong HYT, Nguyen PM, Dang BT, Bui QM, Vu ST, Nguyen ML (2020). Jnlp team: deep learning for legal processing in coliee 2020. arXiv:​2011.​08071
Zurück zum Zitat Nguyen TS, Nguyen LM, Tojo S, Satoh K, Shimazu A (2018) Recurrent neural network-based models for recognizing requisite and effectuation parts in legal texts. Artif Intell Law 26(2):169–199CrossRef Nguyen TS, Nguyen LM, Tojo S, Satoh K, Shimazu A (2018) Recurrent neural network-based models for recognizing requisite and effectuation parts in legal texts. Artif Intell Law 26(2):169–199CrossRef
Zurück zum Zitat Palangi H, Deng L, Shen Y, Gao J, He X, Chen J, Ward R (2016) Deep sentence embedding using long short-term memory networks: analysis and application to information retrieval. IEEE/ACM Trans Audio Speech Lang Process 24(4):694–707CrossRef Palangi H, Deng L, Shen Y, Gao J, He X, Chen J, Ward R (2016) Deep sentence embedding using long short-term memory networks: analysis and application to information retrieval. IEEE/ACM Trans Audio Speech Lang Process 24(4):694–707CrossRef
Zurück zum Zitat Pennington J, Socher R, Manning CD. (2014) Glove: global vectors for word representation. In: Proceedings of the 2014 conference on empirical methods in natural language processing (emnlp), pp 1532–1543 Pennington J, Socher R, Manning CD. (2014) Glove: global vectors for word representation. In: Proceedings of the 2014 conference on empirical methods in natural language processing (emnlp), pp 1532–1543
Zurück zum Zitat Rabelo J, Kim MY, Goebel R, Yoshioka M, Kano Y, Satoh K (2019) A summary of the coliee 2019 competition. In: Jsai international symposium on artificial intelligence, pp 34–49 Rabelo J, Kim MY, Goebel R, Yoshioka M, Kano Y, Satoh K (2019) A summary of the coliee 2019 competition. In: Jsai international symposium on artificial intelligence, pp 34–49
Zurück zum Zitat Radford A, Narasimhan K, Salimans T, Sutskever I (2018) Improving language understanding by generative pre-training. The University of British Columbia Repository Radford A, Narasimhan K, Salimans T, Sutskever I (2018) Improving language understanding by generative pre-training. The University of British Columbia Repository
Zurück zum Zitat Radford A, Wu J, Child R, Luan D, Amodei D, Sutskever I (2019) Language models are unsupervised multitask learners. OpenAI Blog 1(8):9 Radford A, Wu J, Child R, Luan D, Amodei D, Sutskever I (2019) Language models are unsupervised multitask learners. OpenAI Blog 1(8):9
Zurück zum Zitat Salton G, Buckley C (1988) Term-weighting approaches in automatic text retrieval. Inf Process Manag 24(5):513–523CrossRef Salton G, Buckley C (1988) Term-weighting approaches in automatic text retrieval. Inf Process Manag 24(5):513–523CrossRef
Zurück zum Zitat Satoh K, Asai K, Kogawa T, Kubota M, Nakamura M, Nishigai Y, Takano C (2010) Proleg: an implementation of the presupposed ultimate fact theory of Japanese civil code by prolog technology. In: Jsai international symposium on artificial intelligence, pp 153–164 Satoh K, Asai K, Kogawa T, Kubota M, Nakamura M, Nishigai Y, Takano C (2010) Proleg: an implementation of the presupposed ultimate fact theory of Japanese civil code by prolog technology. In: Jsai international symposium on artificial intelligence, pp 153–164
Zurück zum Zitat Šavelka J, Ashley KD (2021) Legal information retrieval for understanding statutory terms. Artif Intell Law 30:245–289CrossRef Šavelka J, Ashley KD (2021) Legal information retrieval for understanding statutory terms. Artif Intell Law 30:245–289CrossRef
Zurück zum Zitat Severyn A, Moschitti A (2015) Learning to rank short text pairs with convolutional deep neural networks. In: Proceedings of the 38th international acm sigir conference on research and development in information retrieval, pp 373–382 Severyn A, Moschitti A (2015) Learning to rank short text pairs with convolutional deep neural networks. In: Proceedings of the 38th international acm sigir conference on research and development in information retrieval, pp 373–382
Zurück zum Zitat Shao Y, Mao J , Liu Y, Ma W, Satoh K, Zhang M, Ma S (2020) Bert-pli: modeling paragraph-level interactions for legal case retrieval. Ijcai, pp 3501–3507 Shao Y, Mao J , Liu Y, Ma W, Satoh K, Zhang M, Ma S (2020) Bert-pli: modeling paragraph-level interactions for legal case retrieval. Ijcai, pp 3501–3507
Zurück zum Zitat Shen Y, He X, Gao J, Deng L, Mesnil G (2014) A latent semantic model with convolutional-pooling structure for information retrieval. In: Proceedings of the 23rd acm international conference on conference on information and knowledge management, pp 101–110 Shen Y, He X, Gao J, Deng L, Mesnil G (2014) A latent semantic model with convolutional-pooling structure for information retrieval. In: Proceedings of the 23rd acm international conference on conference on information and knowledge management, pp 101–110
Zurück zum Zitat Sugathadasa K, Ayesha B, de Silva N, Perera AS, Jayawardana V, Lakmal D, Perera M (2018) Legal document retrieval using document vector embeddings and deep learning. In: Science and information conference, pp 160–175 Sugathadasa K, Ayesha B, de Silva N, Perera AS, Jayawardana V, Lakmal D, Perera M (2018) Legal document retrieval using document vector embeddings and deep learning. In: Science and information conference, pp 160–175
Zurück zum Zitat Tang D, Qin B, Liu T. (2015) Document modeling with gated recurrent neural network for sentiment classification. In: Proceedings of the 2015 conference on empirical methods in natural language processing, pp 1422–1432 Tang D, Qin B, Liu T. (2015) Document modeling with gated recurrent neural network for sentiment classification. In: Proceedings of the 2015 conference on empirical methods in natural language processing, pp 1422–1432
Zurück zum Zitat Thanh NH, Quan BM, Nguyen C, Le T, Phuong NM, Binh DT et al. (2021) A summary of the alqac 2021 competition. In: 2021 13th international conference on knowledge and systems engineering (kse), pp 1–5 Thanh NH, Quan BM, Nguyen C, Le T, Phuong NM, Binh DT et al. (2021) A summary of the alqac 2021 competition. In: 2021 13th international conference on knowledge and systems engineering (kse), pp 1–5
Zurück zum Zitat Tran V, Le Nguyen M, Tojo S, Satoh K (2020) Encoded summarization: summarizing documents into continuous vector space for legal case retrieval. Artif Intell Law 28:441–467CrossRef Tran V, Le Nguyen M, Tojo S, Satoh K (2020) Encoded summarization: summarizing documents into continuous vector space for legal case retrieval. Artif Intell Law 28:441–467CrossRef
Zurück zum Zitat Wang Y, Huang M, Zhu X, Zhao L (2016) Attention-based lstm for aspect-level sentiment classification. In: Proceedings of the 2016 conference on empirical methods in natural language processing, pp 606–615 Wang Y, Huang M, Zhu X, Zhao L (2016) Attention-based lstm for aspect-level sentiment classification. In: Proceedings of the 2016 conference on empirical methods in natural language processing, pp 606–615
Zurück zum Zitat Wehnert S, Sudhi V, Dureja S, Kutty L, Shahania S, De Luca EW (2021) Legal norm retrieval with variations of the bert model combined with tf-idf vectorization. In: Proceedings of the eighteenth international conference on artificial intelligence and law, pp 285–294 Wehnert S, Sudhi V, Dureja S, Kutty L, Shahania S, De Luca EW (2021) Legal norm retrieval with variations of the bert model combined with tf-idf vectorization. In: Proceedings of the eighteenth international conference on artificial intelligence and law, pp 285–294
Zurück zum Zitat Yilmaz ZA, Wang S, Yang W, Zhang H, Lin J (2019) Applying BERT to document retrieval with birch. In: Proceedings of the 2019 conference on empirical methods in natural language processing and the 9th international joint conference on natural language processing (emnlp-ijcnlp): system demonstrations, pp 19–24 Yilmaz ZA, Wang S, Yang W, Zhang H, Lin J (2019) Applying BERT to document retrieval with birch. In: Proceedings of the 2019 conference on empirical methods in natural language processing and the 9th international joint conference on natural language processing (emnlp-ijcnlp): system demonstrations, pp 19–24
Zurück zum Zitat Yoshioka M, Aoki Y, Suzuki Y (2021) Bert-based ensemble methods with data augmentation for legal textual entailment in coliee statute law task. In: Proceedings of the eighteenth international conference on artificial intelligence and law, pp 278–284 Yoshioka M, Aoki Y, Suzuki Y (2021) Bert-based ensemble methods with data augmentation for legal textual entailment in coliee statute law task. In: Proceedings of the eighteenth international conference on artificial intelligence and law, pp 278–284
Zurück zum Zitat Yoshioka M, Kano Y, Kiyota N, Satoh K (2018) Overview of Japanese statute law retrieval and entailment task at coliee-2018. In: Twelfth international workshop on juris-informatics (jurisin 2018) Yoshioka M, Kano Y, Kiyota N, Satoh K (2018) Overview of Japanese statute law retrieval and entailment task at coliee-2018. In: Twelfth international workshop on juris-informatics (jurisin 2018)
Metadaten
Titel
Attentive deep neural networks for legal document retrieval
verfasst von
Ha-Thanh Nguyen
Manh-Kien Phi
Xuan-Bach Ngo
Vu Tran
Le-Minh Nguyen
Minh-Phuong Tu
Publikationsdatum
27.12.2022
Verlag
Springer Netherlands
Erschienen in
Artificial Intelligence and Law / Ausgabe 1/2024
Print ISSN: 0924-8463
Elektronische ISSN: 1572-8382
DOI
https://doi.org/10.1007/s10506-022-09341-8