Skip to main content

2018 | OriginalPaper | Buchkapitel

15. Audio Source Separation in a Musical Context

verfasst von : Bryan Pardo, Zafar Rafii, Zhiyao Duan

Erschienen in: Springer Handbook of Systematic Musicology

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

When musical instruments are recorded in isolation, modern editing and mixing tools allow correction of small errors without requiring a group to re-record an entire passage. Isolated recording also allows rebalancing of levels between musicians without re-recording and application of audio effects to individual instruments. Many of these techniques require (nearly) isolated instrumental recordings to work. Unfortunately, there are many recording situations (e. g., a stereo recording of a 10-piece ensemble) where there are many more instruments than there are microphones, making many editing or remixing tasks difficult or impossible.
Audio source separation is the process of extracting individual sound sources (e. g., a single flute) from a mixture of sounds (e. g., a recording of a concert band using a single microphone). Effective source separation would allow application of editing and remixing techniques to existing recordings with multiple instruments on a single track.
In this chapter we will focus on a pair of source separation approaches designed to work with music audio. The first seeks the repeated elements in the musical scene and separates the repeating from the nonrepeating. The second looks for melodic elements, pitch tracking and streaming the audio into separate elements. Finally, we consider informing source separation with information from the musical score.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
15.1
Zurück zum Zitat P. Common, C. Jutten (Eds.): Handbook of Blind Source Separation: Independent Component Analysis and Applications, 1st edn. (Academic, Oxford 2010) P. Common, C. Jutten (Eds.): Handbook of Blind Source Separation: Independent Component Analysis and Applications, 1st edn. (Academic, Oxford 2010)
15.2
Zurück zum Zitat T. Virtanen: Monaural sound source separation by nonnegative matrix factorization with temporal continuity and sparseness criteria, IEEE Trans. Audio Speech Lang. Process. 15(3), 1066–1074 (2007)CrossRef T. Virtanen: Monaural sound source separation by nonnegative matrix factorization with temporal continuity and sparseness criteria, IEEE Trans. Audio Speech Lang. Process. 15(3), 1066–1074 (2007)CrossRef
15.3
Zurück zum Zitat D. FitzGerald, M. Cranitch, E. Coyle: Non-negative tensor factorisation for sound source separation. In: Irish Signals and Syst. Conf., Dublin (2005) D. FitzGerald, M. Cranitch, E. Coyle: Non-negative tensor factorisation for sound source separation. In: Irish Signals and Syst. Conf., Dublin (2005)
15.4
Zurück zum Zitat P. Smaragdis, B. Raj, M.V.S. Shashanka: A probabilistic latent variable model for acoustic modeling. In: NIPS Workshop Adv. Modeling Acoust. Process., Whistler (2006) P. Smaragdis, B. Raj, M.V.S. Shashanka: A probabilistic latent variable model for acoustic modeling. In: NIPS Workshop Adv. Modeling Acoust. Process., Whistler (2006)
15.5
Zurück zum Zitat P.-S. Huang, S.D. Chen, P. Smaragdis: Singing-voice separation from monaural recordings using robust principal component analysis. In: 37th Int. Conf. Acoustics, Speech and Signal Process., Kyoto (2012) P.-S. Huang, S.D. Chen, P. Smaragdis: Singing-voice separation from monaural recordings using robust principal component analysis. In: 37th Int. Conf. Acoustics, Speech and Signal Process., Kyoto (2012)
15.6
Zurück zum Zitat H. Schenker: Harmony, Vol. 1 (Univ. Chicago Press, Chicago 1980) H. Schenker: Harmony, Vol. 1 (Univ. Chicago Press, Chicago 1980)
15.7
Zurück zum Zitat N. Ruwet, M. Everist: Methods of analysis in musicology, Music Anal. 6(1/2), 3–9 (1987)CrossRef N. Ruwet, M. Everist: Methods of analysis in musicology, Music Anal. 6(1/2), 3–9 (1987)CrossRef
15.8
Zurück zum Zitat A. Ockelford: Repetition in Music: Theoretical and Metatheoretical Perspectives, Royal Musical Association Monographs, Vol. 13, 2005) A. Ockelford: Repetition in Music: Theoretical and Metatheoretical Perspectives, Royal Musical Association Monographs, Vol. 13, 2005)
15.9
Zurück zum Zitat M.A. Bartsch: To catch a chorus using chroma-based representations for audio thumbnailing. In: IEEE Workshop Appl. Signal Process. Audio Acoust., New Paltz (2001) M.A. Bartsch: To catch a chorus using chroma-based representations for audio thumbnailing. In: IEEE Workshop Appl. Signal Process. Audio Acoust., New Paltz (2001)
15.10
Zurück zum Zitat M. Cooper, J. Foote: Automatic music summarization via similarity analysis. In: 3rd Int. Conf. Music Inf. Retr., Paris (2002) M. Cooper, J. Foote: Automatic music summarization via similarity analysis. In: 3rd Int. Conf. Music Inf. Retr., Paris (2002)
15.11
Zurück zum Zitat G. Peeters: Deriving musical structures from signal analysis for music audio summary generation: Sequence and state approach, Comput. Music Modeling Retr. 2771, 143–166 (2004)CrossRef G. Peeters: Deriving musical structures from signal analysis for music audio summary generation: Sequence and state approach, Comput. Music Modeling Retr. 2771, 143–166 (2004)CrossRef
15.12
Zurück zum Zitat J. Foote: Automatic audio segmentation using a measure of audio novelty. In: IEEE Int. Conf. Multimedia and Expo, New York (2000) J. Foote: Automatic audio segmentation using a measure of audio novelty. In: IEEE Int. Conf. Multimedia and Expo, New York (2000)
15.13
Zurück zum Zitat J. Foote, S. Uchihashi: The beat spectrum: A new approach to rhythm analysis. In: IEEE Int. Conf. Multimedia and Expo, Tokyo (2001) J. Foote, S. Uchihashi: The beat spectrum: A new approach to rhythm analysis. In: IEEE Int. Conf. Multimedia and Expo, Tokyo (2001)
15.14
Zurück zum Zitat K. Yoshii, M. Goto, H.G. Okuno: Drum sound identification for polyphonic music using template adaptation and matching methods. In: ISCA Tutor. Res. Workshop on Stat. Percept. Audio Process., Jeju (2004) K. Yoshii, M. Goto, H.G. Okuno: Drum sound identification for polyphonic music using template adaptation and matching methods. In: ISCA Tutor. Res. Workshop on Stat. Percept. Audio Process., Jeju (2004)
15.15
Zurück zum Zitat R.B. Dannenberg: Listening to Naima: An automated structural analysis of music from recorded audio. In: Int. Comput. Music Conf., Gothenburg (2002) R.B. Dannenberg: Listening to Naima: An automated structural analysis of music from recorded audio. In: Int. Comput. Music Conf., Gothenburg (2002)
15.16
Zurück zum Zitat R.B. Dannenberg, M. Goto: Music structure analysis from acoustic signals, Handbook of Signal Process, Acoustics 1, 305–331 (2009) R.B. Dannenberg, M. Goto: Music structure analysis from acoustic signals, Handbook of Signal Process, Acoustics 1, 305–331 (2009)
15.17
Zurück zum Zitat J. Paulus, M. Müller, A. Klapuri: Audio-based music structure analysis. In: 11th Int. Soc. Music Inf. Retr., Utrecht (2010) J. Paulus, M. Müller, A. Klapuri: Audio-based music structure analysis. In: 11th Int. Soc. Music Inf. Retr., Utrecht (2010)
15.18
Zurück zum Zitat J.H. McDermott, D. Wrobleski, A.J. Oxenham: Recovering sound sources from embedded repetition, Proc. Nat. Acad. Sci. USA 108(3), 1188–1193 (2011)CrossRef J.H. McDermott, D. Wrobleski, A.J. Oxenham: Recovering sound sources from embedded repetition, Proc. Nat. Acad. Sci. USA 108(3), 1188–1193 (2011)CrossRef
15.19
Zurück zum Zitat A. Bregman, C. Jutten: Auditory Scene Analysis: The Perceptual Organization of Sound (MIT Press, Cambridge 1994) A. Bregman, C. Jutten: Auditory Scene Analysis: The Perceptual Organization of Sound (MIT Press, Cambridge 1994)
15.21
Zurück zum Zitat Z. Rafii, B. Pardo: A simple music–voice separation system based on the extraction of the repeating musical structure. In: 36th Int. Conf. Acoust. Speech Signal Process., Prague (2011) Z. Rafii, B. Pardo: A simple music–voice separation system based on the extraction of the repeating musical structure. In: 36th Int. Conf. Acoust. Speech Signal Process., Prague (2011)
15.22
Zurück zum Zitat Z. Rafii, B. Pardo: REpeating pattern extraction technique (REPET): A simple method for music–voice separation, IEEE Trans. Audio Speech Lang. Process. 21(1), 71–82 (2013)CrossRef Z. Rafii, B. Pardo: REpeating pattern extraction technique (REPET): A simple method for music–voice separation, IEEE Trans. Audio Speech Lang. Process. 21(1), 71–82 (2013)CrossRef
15.23
Zurück zum Zitat Z. Rafii, D.L. Sun, F.G. Germain, G.J. Mysore: Combining modeling of singing voice and background music for automatic separation of musical mixtures. In: 14th Int. Soc. Music Inf. Retr., Curitiba (2013) Z. Rafii, D.L. Sun, F.G. Germain, G.J. Mysore: Combining modeling of singing voice and background music for automatic separation of musical mixtures. In: 14th Int. Soc. Music Inf. Retr., Curitiba (2013)
15.24
Zurück zum Zitat A. Liutkus, Z. Rafii, R. Badeau, B. Pardo, G. Richard: Adaptive filtering for music–voice separation exploiting the repeating musical structure. In: 37th Int. Conf. Acoustics, Speech and Signal Process., Kyoto (2012) A. Liutkus, Z. Rafii, R. Badeau, B. Pardo, G. Richard: Adaptive filtering for music–voice separation exploiting the repeating musical structure. In: 37th Int. Conf. Acoustics, Speech and Signal Process., Kyoto (2012)
15.25
Zurück zum Zitat Z. Rafii, B. Pardo: Music–voice separation using the similarity matrix. In: 13th Int. Soc. Music Inf. Retr., Porto (2012) Z. Rafii, B. Pardo: Music–voice separation using the similarity matrix. In: 13th Int. Soc. Music Inf. Retr., Porto (2012)
15.26
Zurück zum Zitat J. Foote: Visualizing music and audio using self-similarity. In: 7th ACM Int. Conf. Multimedia, Orlando (1999) J. Foote: Visualizing music and audio using self-similarity. In: 7th ACM Int. Conf. Multimedia, Orlando (1999)
15.27
Zurück zum Zitat Z. Rafii, B. Pardo: Online REPET-SIM for real-time speech enhancement. In: 38th Int. Conf. Acoust. Speech and Signal Process., Vancouver (2013) Z. Rafii, B. Pardo: Online REPET-SIM for real-time speech enhancement. In: 38th Int. Conf. Acoust. Speech and Signal Process., Vancouver (2013)
15.28
Zurück zum Zitat D. FitzGerald: Vocal separation using nearest neighbours and median filtering. In: 23nd IET Irish Signals and Syst. Conf., Maynooth (2012) D. FitzGerald: Vocal separation using nearest neighbours and median filtering. In: 23nd IET Irish Signals and Syst. Conf., Maynooth (2012)
15.29
Zurück zum Zitat Z. Duan, B. Pardo, C. Zhang: Multiple fundamental frequency estimation by modeling spectral peaks and non-peak regions, IEEE Trans. Audio Speech Lang. Process. 18(8), 2121–2133 (2010)CrossRef Z. Duan, B. Pardo, C. Zhang: Multiple fundamental frequency estimation by modeling spectral peaks and non-peak regions, IEEE Trans. Audio Speech Lang. Process. 18(8), 2121–2133 (2010)CrossRef
15.30
Zurück zum Zitat Z. Duan, J. Han, B. Pardo: Multi-pitch streaming of harmonic sound mixtures, IEEE Trans. Audio Speech Lang. Process. 22(1), 1–13 (2014)CrossRef Z. Duan, J. Han, B. Pardo: Multi-pitch streaming of harmonic sound mixtures, IEEE Trans. Audio Speech Lang. Process. 22(1), 1–13 (2014)CrossRef
15.32
Zurück zum Zitat M. Davy, S.J. Godsill, J. Idier: Bayesian analysis of polyphonic western tonal music, J. Acoustical Soc. Am. 119, 2498–2517 (2006)CrossRef M. Davy, S.J. Godsill, J. Idier: Bayesian analysis of polyphonic western tonal music, J. Acoustical Soc. Am. 119, 2498–2517 (2006)CrossRef
15.33
Zurück zum Zitat E. Vincent, M.D. Plumbley: Efficient Bayesian inference for harmonic models via adaptive posterior factorization, Neurocomputing 72, 79–87 (2008)CrossRef E. Vincent, M.D. Plumbley: Efficient Bayesian inference for harmonic models via adaptive posterior factorization, Neurocomputing 72, 79–87 (2008)CrossRef
15.34
Zurück zum Zitat K. Kashino, H. Murase: A sound source identification system for ensemble music based on template adaptation and music stream extraction, Speech Commun. 27(3--4), 337–349 (1999)CrossRef K. Kashino, H. Murase: A sound source identification system for ensemble music based on template adaptation and music stream extraction, Speech Commun. 27(3--4), 337–349 (1999)CrossRef
15.35
Zurück zum Zitat M. Goto: A real-time music-scene-description system: Predominant-F0 estimation for detecting melody and bass lines in real-world audio signals, Speech Commun. 43(4), 311–329 (2004)CrossRef M. Goto: A real-time music-scene-description system: Predominant-F0 estimation for detecting melody and bass lines in real-world audio signals, Speech Commun. 43(4), 311–329 (2004)CrossRef
15.36
Zurück zum Zitat H. Kameoka, T. Nishimoto, S. Sagayama: A multipitch analyzer based on harmonic temporal structured clustering, IEEE Trans. Audio Speech Lang. Process. 15(3), 982–994 (2007)CrossRef H. Kameoka, T. Nishimoto, S. Sagayama: A multipitch analyzer based on harmonic temporal structured clustering, IEEE Trans. Audio Speech Lang. Process. 15(3), 982–994 (2007)CrossRef
15.37
Zurück zum Zitat S. Saito, H. Kameoka, K. Takahashi, T. Nishimoto, S. Sagayama: Specmurt analysis of polyphonic music signals, IEEE Trans. Speech Audio Process. 16(3), 639–650 (2008)CrossRef S. Saito, H. Kameoka, K. Takahashi, T. Nishimoto, S. Sagayama: Specmurt analysis of polyphonic music signals, IEEE Trans. Speech Audio Process. 16(3), 639–650 (2008)CrossRef
15.38
Zurück zum Zitat J.-L. Durrieu, G. Richard, B. David: Singer melody extraction in polyphonic signals using source separation methods. In: Proc. IEEE Int. Conf. Acoustics Speech Signal Process. (ICASSP) (2008) pp. 169–172 J.-L. Durrieu, G. Richard, B. David: Singer melody extraction in polyphonic signals using source separation methods. In: Proc. IEEE Int. Conf. Acoustics Speech Signal Process. (ICASSP) (2008) pp. 169–172
15.39
Zurück zum Zitat V. Emiya, R. Badeau, B. David: Multipitch estimation of quasi-harmonic sounds in colored noise. In: Proc. Int. Conf. Digital Audio Effects (DAFx) (2007) V. Emiya, R. Badeau, B. David: Multipitch estimation of quasi-harmonic sounds in colored noise. In: Proc. Int. Conf. Digital Audio Effects (DAFx) (2007)
15.40
Zurück zum Zitat G. Reis, N. Fonseca, F. Ferndandez: Genetic algorithm approach to polyphonic music transcription. In: Proc. IEEE Int. Symp. Intell. Signal Process (2007) G. Reis, N. Fonseca, F. Ferndandez: Genetic algorithm approach to polyphonic music transcription. In: Proc. IEEE Int. Symp. Intell. Signal Process (2007)
15.41
Zurück zum Zitat T. Tolonen, M. Karjalainen: A computationally efficient multipitch analysis model, IEEE Trans. Speech Audio Process. 8(6), 708–716 (2000)CrossRef T. Tolonen, M. Karjalainen: A computationally efficient multipitch analysis model, IEEE Trans. Speech Audio Process. 8(6), 708–716 (2000)CrossRef
15.42
Zurück zum Zitat A. de Cheveigné, H. Kawahara: Multiple period estimation and pitch perception model, Speech Commun. 27, 175–185 (1999)CrossRef A. de Cheveigné, H. Kawahara: Multiple period estimation and pitch perception model, Speech Commun. 27, 175–185 (1999)CrossRef
15.43
Zurück zum Zitat A. Klapuri: Multiple fundamental frequency estimation based on harmonicity and spectral smoothness, IEEE Trans. Speech Audio Process. 11(6), 804–815 (2003)CrossRef A. Klapuri: Multiple fundamental frequency estimation based on harmonicity and spectral smoothness, IEEE Trans. Speech Audio Process. 11(6), 804–815 (2003)CrossRef
15.44
Zurück zum Zitat A. Klapuri: Multiple fundamental frequency estimation by summing harmonic amplitudes. In: Proc. ISMIR (2006) pp. 216–221 A. Klapuri: Multiple fundamental frequency estimation by summing harmonic amplitudes. In: Proc. ISMIR (2006) pp. 216–221
15.45
Zurück zum Zitat R.J. Leistikow, H.D. Thornburg, J.S. Smith, J. Berger: Bayesian identification of closely-spaced chords from single-frame STFT peaks. In: Proc. Int. Conf. Digital Audio Effects (DAFx’04), Naples (2004) pp. 228–233 R.J. Leistikow, H.D. Thornburg, J.S. Smith, J. Berger: Bayesian identification of closely-spaced chords from single-frame STFT peaks. In: Proc. Int. Conf. Digital Audio Effects (DAFx’04), Naples (2004) pp. 228–233
15.46
Zurück zum Zitat A. Pertusa, J.M. Inesta: Multiple fundamental frequency estimation using Gaussian smoothness. In: Proc. IEEE Int. Conf. Acoust. Speech Signal Process. (ICASSP) (2008) pp. 105–108 A. Pertusa, J.M. Inesta: Multiple fundamental frequency estimation using Gaussian smoothness. In: Proc. IEEE Int. Conf. Acoust. Speech Signal Process. (ICASSP) (2008) pp. 105–108
15.47
Zurück zum Zitat C. Yeh, A. Röbel, X. Rodet: Multiple fundamental frequency estimation of polyphonic music signals. In: Proc. IEEE Int. Conf. Acoustics, Speech Signal Process. (ICASSP) (2005) pp. 225–228 C. Yeh, A. Röbel, X. Rodet: Multiple fundamental frequency estimation of polyphonic music signals. In: Proc. IEEE Int. Conf. Acoustics, Speech Signal Process. (ICASSP) (2005) pp. 225–228
15.49
Zurück zum Zitat Z. Duan, Y. Zhang, C. Zhang, Z. Shi: Unsupervised single-channel music source separation by average harmonic structure modeling, IEEE Trans. Audio Speech Lang. Process. 16(4), 766–778 (2008)CrossRef Z. Duan, Y. Zhang, C. Zhang, Z. Shi: Unsupervised single-channel music source separation by average harmonic structure modeling, IEEE Trans. Audio Speech Lang. Process. 16(4), 766–778 (2008)CrossRef
15.50
Zurück zum Zitat J.O. Smith, X. Serra: Parshl: An analysis–synthesis program for non-harmonic sounds based on a sinusoidal representation. In: Proc. Int. Comput. Music Conf. (ICMC) (1987) J.O. Smith, X. Serra: Parshl: An analysis–synthesis program for non-harmonic sounds based on a sinusoidal representation. In: Proc. Int. Comput. Music Conf. (ICMC) (1987)
15.52
Zurück zum Zitat A. de Cheveigné, H. Kawahara: YIN, a fundamental frequency estimator for speech and music, J. Acoustical Soc. Am. 111, 1917–1930 (2002)CrossRef A. de Cheveigné, H. Kawahara: YIN, a fundamental frequency estimator for speech and music, J. Acoustical Soc. Am. 111, 1917–1930 (2002)CrossRef
15.53
Zurück zum Zitat M. Ryynanen, A. Klapuri: Polyphonic music transcription using note event modeling. In: Proc. IEEE Workshop on Appl. Signal Process. Audio Acoustics (WASPAA) (2005) pp. 319–322 M. Ryynanen, A. Klapuri: Polyphonic music transcription using note event modeling. In: Proc. IEEE Workshop on Appl. Signal Process. Audio Acoustics (WASPAA) (2005) pp. 319–322
15.54
Zurück zum Zitat W.-C. Chang, A.W.Y. Su, C. Yeh, A. Robel, X. Rodet: Multiple-F0 tracking based on a high-order HMM model. In: Proc. Int. Conf. Digital Audio Effects (DAFx) (2008) W.-C. Chang, A.W.Y. Su, C. Yeh, A. Robel, X. Rodet: Multiple-F0 tracking based on a high-order HMM model. In: Proc. Int. Conf. Digital Audio Effects (DAFx) (2008)
15.55
Zurück zum Zitat Z. Duan, B. Pardo, L. Daudet: A novel cepstral representation for timbre modeling of sound sources in polyphonic mixtures. In: Proc. IEEE Int. Conf. Acoustics Speech Signal Process. (ICASSP) (2014) Z. Duan, B. Pardo, L. Daudet: A novel cepstral representation for timbre modeling of sound sources in polyphonic mixtures. In: Proc. IEEE Int. Conf. Acoustics Speech Signal Process. (ICASSP) (2014)
15.56
Zurück zum Zitat K. Wagstaff, C. Cardie: Clustering with instance-level constraints. In: Proc. Int. Conf. Machine Learning (ICML) (2000) pp. 1103–1110 K. Wagstaff, C. Cardie: Clustering with instance-level constraints. In: Proc. Int. Conf. Machine Learning (ICML) (2000) pp. 1103–1110
15.57
Zurück zum Zitat K. Wagstaff, C. Cardie, S. Rogers, S. Schroedl: Constrained k-means clustering with background knowledge. In: Proc. Int. Conf. Machine Learning (ICML) (2001) pp. 577–584 K. Wagstaff, C. Cardie, S. Rogers, S. Schroedl: Constrained k-means clustering with background knowledge. In: Proc. Int. Conf. Machine Learning (ICML) (2001) pp. 577–584
15.58
Zurück zum Zitat I. Davidson, S.S. Ravi, M. Ester: Efficient incremental constrained clustering. In: Proc. ACM Conf. Knowl. Discovery and Data Mining (KDD) (2007) pp. 240–249 I. Davidson, S.S. Ravi, M. Ester: Efficient incremental constrained clustering. In: Proc. ACM Conf. Knowl. Discovery and Data Mining (KDD) (2007) pp. 240–249
15.59
Zurück zum Zitat Z. Duan, B. Pardo: Soundprism: An online system for score-informed source separation of music audio, IEEE J. Selected Topics Signal Process. 5(6), 1205–1215 (2011)CrossRef Z. Duan, B. Pardo: Soundprism: An online system for score-informed source separation of music audio, IEEE J. Selected Topics Signal Process. 5(6), 1205–1215 (2011)CrossRef
15.60
Zurück zum Zitat S. Ewert, M. Müller, P. Grosche: High resolution audio synchronization using chroma onset features. In: Proc. IEEE Int. Conf. Acoustics Speech Signal Process. (ICASSP) (2009) pp. 1869–1872 S. Ewert, M. Müller, P. Grosche: High resolution audio synchronization using chroma onset features. In: Proc. IEEE Int. Conf. Acoustics Speech Signal Process. (ICASSP) (2009) pp. 1869–1872
15.61
Zurück zum Zitat C. Joder, S. Essid, G. Richard: A conditional random field framework for robust and scalable audio-to-score matching, IEEE Trans. Audio Speech Lang. Process. 19(8), 2385–2397 (2011)CrossRef C. Joder, S. Essid, G. Richard: A conditional random field framework for robust and scalable audio-to-score matching, IEEE Trans. Audio Speech Lang. Process. 19(8), 2385–2397 (2011)CrossRef
15.62
Zurück zum Zitat A. Doucet, N. de Freitas, N.J. Gordon (Eds.): Sequential Monte Carlo Methods in Practice (Springer, New York 2001)MATH A. Doucet, N. de Freitas, N.J. Gordon (Eds.): Sequential Monte Carlo Methods in Practice (Springer, New York 2001)MATH
15.63
Zurück zum Zitat M.S. Arulampalam, S. Maskell, N. Gordon, T. Clapp: A tutorial on particle filters for online nonlinear–non-Gaussian Bayesian tracking, IEEE Trans. Signal Process. 50(2), 174–188 (2002)CrossRef M.S. Arulampalam, S. Maskell, N. Gordon, T. Clapp: A tutorial on particle filters for online nonlinear–non-Gaussian Bayesian tracking, IEEE Trans. Signal Process. 50(2), 174–188 (2002)CrossRef
Metadaten
Titel
Audio Source Separation in a Musical Context
verfasst von
Bryan Pardo
Zafar Rafii
Zhiyao Duan
Copyright-Jahr
2018
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-55004-5_15

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.