Skip to main content

2025 | OriginalPaper | Buchkapitel

AUTO-DataGenCARS+: An Advanced User-Oriented Tool to Generate Data for the Evaluation of Recommender Systems

verfasst von : María del Carmen Rodríguez-Hernández, Sergio Ilarri, Marcos Caballero, Raquel Trillo-Lado, Ramón Hermoso, Rafael del-Hoyo-Alonso

Erschienen in: Advances in Mobile Computing and Multimedia Intelligence

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Context-Aware Recommender Systems (CARS) offer context-based suggestions that are particularly crucial in the tourism domain, where personalized experiences significantly enhance user satisfaction. However, the evaluation of CARS is a challenge, partly due to the scarce availability of appropriate datasets that fulfill a variety of evaluation purposes. For example, to evaluate CARS, we need datasets that incorporate context data, but in practice existing datasets provide very little contextual information.
This paper presents AUTO-DataGenCARS+, a graphical user-oriented tool designed to generate synthetic data for evaluating both Recommender Systems and CARS. Some of the relevant features of the tool include: a flexible definition of user profiles, user, item and context schemas; a realistic generation of ratings and item attributes; the possibility to mix real and synthetic datasets; functionalities for analyzing and evaluating existing datasets; and an extendable architecture for advanced users. We illustrate the benefits of AUTO-DataGenCARS+ through several examples and experimental evaluations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Adomavicius, G., Sankaranarayanan, R., Sen, S., Tuzhilin, A.: Incorporating contextual information in recommender systems using a multidimensional approach. ACM Trans. Inf. Syst. 23(1), 103–145 (2005)CrossRef Adomavicius, G., Sankaranarayanan, R., Sen, S., Tuzhilin, A.: Incorporating contextual information in recommender systems using a multidimensional approach. ACM Trans. Inf. Syst. 23(1), 103–145 (2005)CrossRef
2.
Zurück zum Zitat Bobadilla, J., Gutiérrez, A., Yera, R., Martínez, L.: Creating synthetic datasets for collaborative filtering recommender systems using generative adversarial networks. Knowl.-Based Syst. 280, 111016 (2023)CrossRef Bobadilla, J., Gutiérrez, A., Yera, R., Martínez, L.: Creating synthetic datasets for collaborative filtering recommender systems using generative adversarial networks. Knowl.-Based Syst. 280, 111016 (2023)CrossRef
3.
Zurück zum Zitat Braunhofer, M., Elahi, M., Ricci, F.: STS: a context-aware mobile recommender system for places of interest. In: 22nd International Conference on User Modeling, Adaptation, and Personalization (UMAP), pp. 75–80. CEUR Workshop Proceedings (2014) Braunhofer, M., Elahi, M., Ricci, F.: STS: a context-aware mobile recommender system for places of interest. In: 22nd International Conference on User Modeling, Adaptation, and Personalization (UMAP), pp. 75–80. CEUR Workshop Proceedings (2014)
4.
Zurück zum Zitat del Carmen Rodríguez-Hernández, M., Ilarri, S., Hermoso, R., Trillo-Lado, R.: DataGenCARS: a generator of synthetic data for the evaluation of context-aware recommendation systems. Pervasive Mob. Comput. 38, Part 2(2017), 516–541 (2017) del Carmen Rodríguez-Hernández, M., Ilarri, S., Hermoso, R., Trillo-Lado, R.: DataGenCARS: a generator of synthetic data for the evaluation of context-aware recommendation systems. Pervasive Mob. Comput. 38, Part 2(2017), 516–541 (2017)
5.
Zurück zum Zitat del Carmen Rodríguez-Hernández, M., Ilarri, S., Trillo-Lado, R., Hermoso, R.: Location-aware recommendation systems: where we are and where we recommend to go. In: International Workshop on Location-Aware Recommendations (LocalRec 2015), vol. 1405, pp. 1–8. CEUR Workshop Proceedings (2015) del Carmen Rodríguez-Hernández, M., Ilarri, S., Trillo-Lado, R., Hermoso, R.: Location-aware recommendation systems: where we are and where we recommend to go. In: International Workshop on Location-Aware Recommendations (LocalRec 2015), vol. 1405, pp. 1–8. CEUR Workshop Proceedings (2015)
6.
Zurück zum Zitat del Carmen Rodríguez-Hernández, M., Ilarri, S.: AI-based mobile context-aware recommender systems from an information management perspective: progress and directions. Knowl.-Based Syst. 215, 1–29 (2021) del Carmen Rodríguez-Hernández, M., Ilarri, S.: AI-based mobile context-aware recommender systems from an information management perspective: progress and directions. Knowl.-Based Syst. 215, 1–29 (2021)
10.
Zurück zum Zitat Ilarri, S., Trillo-Lado, R., Hermoso, R.: Datasets for context-aware recommender systems: current context and possible directions. In: First Workshop on Context in Analytics (CiA), pp. 25–28. IEEE (2018) Ilarri, S., Trillo-Lado, R., Hermoso, R.: Datasets for context-aware recommender systems: current context and possible directions. In: First Workshop on Context in Analytics (CiA), pp. 25–28. IEEE (2018)
12.
Zurück zum Zitat Lee, H., Kwon, J.: Personalised TV contents recommender system using collaborative context tagging-based users’s preference prediction technique. Int. J. Multimed. Ubiquit. Eng. 9(5), 231–240 (2014)CrossRef Lee, H., Kwon, J.: Personalised TV contents recommender system using collaborative context tagging-based users’s preference prediction technique. Int. J. Multimed. Ubiquit. Eng. 9(5), 231–240 (2014)CrossRef
13.
Zurück zum Zitat Leszczynski, M., et al.: Talk the walk: synthetic data generation for conversational music recommendation. CoRR 2301.11489, 1–10 (2023) Leszczynski, M., et al.: Talk the walk: synthetic data generation for conversational music recommendation. CoRR 2301.11489, 1–10 (2023)
14.
Zurück zum Zitat Liu, F., Cheng, Z., Chen, H., Wei, Y., Nie, L., Kankanhalli, M.: Privacy-preserving synthetic data generation for recommendation systems. In: 45th International ACM Conference on Research and Development in Information Retrieval (SIGIR 2022), pp. 1379–1389. ACM (2022) Liu, F., Cheng, Z., Chen, H., Wei, Y., Nie, L., Kankanhalli, M.: Privacy-preserving synthetic data generation for recommendation systems. In: 45th International ACM Conference on Research and Development in Information Retrieval (SIGIR 2022), pp. 1379–1389. ACM (2022)
15.
Zurück zum Zitat Monti, D., Rizzo, G., Morisio, M.: All you need is ratings: a clustering approach to synthetic rating datasets generation. CoRR abs/1909.00687, 1–5 (2019) Monti, D., Rizzo, G., Morisio, M.: All you need is ratings: a clustering approach to synthetic rating datasets generation. CoRR abs/1909.00687, 1–5 (2019)
16.
Zurück zum Zitat Nguyen, L.V., Vo, N.D., Jung, J.J.: DaGzang: a synthetic data generator for cross-domain recommendation services. PeerJ Comput. Sci. 9(e1360), 1–16 (2023) Nguyen, L.V., Vo, N.D., Jung, J.J.: DaGzang: a synthetic data generator for cross-domain recommendation services. PeerJ Comput. Sci. 9(e1360), 1–16 (2023)
17.
Zurück zum Zitat Pasinato, M., Eduardo, C.M., Aufaure, M.A., Zimbrão, G.: Generating synthetic data for context-aware recommender systems. In: BRICS Congress on Computational Intelligence and 11th Brazilian Congress on Computational Intelligence (BRICS-CCI & CBIC), pp. 563–567. IEEE (2013) Pasinato, M., Eduardo, C.M., Aufaure, M.A., Zimbrão, G.: Generating synthetic data for context-aware recommender systems. In: BRICS Congress on Computational Intelligence and 11th Brazilian Congress on Computational Intelligence (BRICS-CCI & CBIC), pp. 563–567. IEEE (2013)
18.
Zurück zum Zitat Pedregosa, F., et al.: Scikit-learn: machine Learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)MathSciNet Pedregosa, F., et al.: Scikit-learn: machine Learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)MathSciNet
19.
Zurück zum Zitat Polatidis, N., Georgiadis, C.K.: Mobile recommender systems: an overview of technologies and challenges. In: Second International Conference on Informatics & Applications (ICIA 2013). IEEE (2013) Polatidis, N., Georgiadis, C.K.: Mobile recommender systems: an overview of technologies and challenges. In: Second International Conference on Informatics & Applications (ICIA 2013). IEEE (2013)
21.
Zurück zum Zitat Slokom, M.: Comparing recommender systems using synthetic data. In: 12th ACM Conference on Recommender Systems (RecSys 2018), pp. 548–552. ACM (2018) Slokom, M.: Comparing recommender systems using synthetic data. In: 12th ACM Conference on Recommender Systems (RecSys 2018), pp. 548–552. ACM (2018)
22.
Zurück zum Zitat Susan, S., Kumar, A.: The balancing trick: optimized sampling of imbalanced – a brief survey of the recent state of the art. Eng. Rep. 3(4) (2020) Susan, S., Kumar, A.: The balancing trick: optimized sampling of imbalanced – a brief survey of the recent state of the art. Eng. Rep. 3(4) (2020)
24.
Zurück zum Zitat Yépez, C., Recalde, L., Loza-Aguirre, E.: Preventing group privacy Disclosure Through synthetic data: an evaluation of recommender system methods. Preprint (2022) Yépez, C., Recalde, L., Loza-Aguirre, E.: Preventing group privacy Disclosure Through synthetic data: an evaluation of recommender system methods. Preprint (2022)
25.
Zurück zum Zitat Zangerle, E., Bauer, C.: Evaluating recommender systems: survey and framework. ACM Comput. Surv. 55(8) (2022) Zangerle, E., Bauer, C.: Evaluating recommender systems: survey and framework. ACM Comput. Surv. 55(8) (2022)
Metadaten
Titel
AUTO-DataGenCARS+: An Advanced User-Oriented Tool to Generate Data for the Evaluation of Recommender Systems
verfasst von
María del Carmen Rodríguez-Hernández
Sergio Ilarri
Marcos Caballero
Raquel Trillo-Lado
Ramón Hermoso
Rafael del-Hoyo-Alonso
Copyright-Jahr
2025
DOI
https://doi.org/10.1007/978-3-031-78049-3_16