Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

30.05.2019 | Focus | Ausgabe 11/2020

Soft Computing 11/2020

Auto-encoder-based generative models for data augmentation on regression problems

Zeitschrift:
Soft Computing > Ausgabe 11/2020
Autor:
Hiroshi Ohno
Wichtige Hinweise
Communicated by Mu-Yen Chen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Recently, auto-encoder-based generative models have been widely used successfully for image processing. However, there are few studies on the realization of continuous input–output mappings for regression problems. Lack of a sufficient amount of training data plagues regression problems, which is also a notable problem in machine learning, which affects its application in the field of materials science. Using variational auto-encoders (VAEs) as generative models for data augmentation, we address the issue of small data size for regression problems. VAEs are popular and powerful auto-encoder-based generative models. Generative auto-encoder models such as VAEs use multilayer neural networks to generate sample data. In this study, we demonstrate the effectiveness of multi-task learning (auto-encoding and regression tasks) relating to regression problems. We conducted experiments on seven benchmark datasets and on one ionic conductivity dataset as an application in materials science. The experimental results show that the multi-task learning for VAEs improved the generalization performance of multivariable linear regression model trained with augmented data.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 11/2020

Soft Computing 11/2020 Zur Ausgabe

Premium Partner

    Bildnachweise