Skip to main content

2025 | OriginalPaper | Buchkapitel

Autogenous Self-healing of Alkali-Activated Materials: A Review

verfasst von : Ahmed Khaled, Ahmed Soliman, Nourhan Ali

Erschienen in: Proceedings of the Canadian Society for Civil Engineering Annual Conference 2023, Volume 6

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Alkali-activated materials (AAMs) are introduced as promising green materials with less carbon dioxide (CO2) footprints rather than ordinary Portland cement (OPC) in concrete production. Moreover, as innovative, durable, and sustainable materials, AAMs exhibited superior mechanical properties and durability performances comparable to OPC. AAMs have advantageous characteristics (i.e., high early-age strength, high strength development, high chemical resistance, severe environmental conditions, etc.). Those intrinsic features have promoted AAMs in diverse applications, including repair approaches. Furthermore, from a sustainability perspective, self-healing as an inherent feature of AAMs should be addressed when considering those materials for repair purposes. AAMs have been deduced to be potentially self-healed autogenously and autonomously. Autogenous healing is defined as the ability of concrete to heal cracks over the long term without any manual interference. Autonomous healing, by which the induced cracks will be plugged using engineered materials embedded inside the mixture during casting. This paper focused on the autogenous self-healing of AAMs, the extent of self-healing, and factors affecting self-healing efficiency. Also, determination and quantification of self-healing were demonstrated as well.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Xie T, Ozbakkaloglu T (2015) Behavior of low-calcium fly and bottom ash-based geopolymer concrete cured at ambient temperature. Ceram Int 41(4):5945–5958 Xie T, Ozbakkaloglu T (2015) Behavior of low-calcium fly and bottom ash-based geopolymer concrete cured at ambient temperature. Ceram Int 41(4):5945–5958
2.
Zurück zum Zitat Zhang Z et al (2014) Geopolymer foam concrete: an emerging material for sustainable construction, 56:113–127 Zhang Z et al (2014) Geopolymer foam concrete: an emerging material for sustainable construction, 56:113–127
3.
Zurück zum Zitat McLellan BC et al (2011) Costs and carbon emissions for geopolymer pastes in comparison to ordinary Portland cement, 19(9–10):1080–1090 McLellan BC et al (2011) Costs and carbon emissions for geopolymer pastes in comparison to ordinary Portland cement, 19(9–10):1080–1090
4.
Zurück zum Zitat Duxson P et al (2007) The role of inorganic polymer technology in the development of ‘green concrete’, 37(12):1590–1597 Duxson P et al (2007) The role of inorganic polymer technology in the development of ‘green concrete’, 37(12):1590–1597
5.
Zurück zum Zitat Glukhovsky V (1994) Ancient, modern and future concretes. In: Proceedings of the first international conference on Alkaline cements and concretes, Kiev, Ukraine Glukhovsky V (1994) Ancient, modern and future concretes. In: Proceedings of the first international conference on Alkaline cements and concretes, Kiev, Ukraine
6.
Zurück zum Zitat Davidovits J (1987) Ancient and modern concretes: What is the real difference?, ACI Concrete Int 9(12):23–28 Davidovits J (1987) Ancient and modern concretes: What is the real difference?, ACI Concrete Int 9(12):23–28
7.
Zurück zum Zitat Fu Q et al (2021) Hydration characteristics and microstructure of alkali-activated slag concrete: a review Fu Q et al (2021) Hydration characteristics and microstructure of alkali-activated slag concrete: a review
8.
Zurück zum Zitat Wang A et al (2020) The durability of alkali-activated materials in comparison with ordinary Portland cements and concretes: a review, 6(6):695–706 Wang A et al (2020) The durability of alkali-activated materials in comparison with ordinary Portland cements and concretes: a review, 6(6):695–706
9.
Zurück zum Zitat Alomayri T, Adesina A, Das S (2021) Influence of amorphous raw rice husk ash as precursor and curing condition on the performance of Alkali activated concrete. Case Stud Constr Mater 15:e00777 Alomayri T, Adesina A, Das S (2021) Influence of amorphous raw rice husk ash as precursor and curing condition on the performance of Alkali activated concrete. Case Stud Constr Mater 15:e00777
10.
Zurück zum Zitat Glukhovsky V, Rostovskaja G, Rumyna G (1980) High strength slag-alkaline cements. In: Proceedings of the seventh international congress on the chemistry of cement Glukhovsky V, Rostovskaja G, Rumyna G (1980) High strength slag-alkaline cements. In: Proceedings of the seventh international congress on the chemistry of cement
11.
Zurück zum Zitat Luhar S, Luhar I, Shaikh FUA (2021) Review on performance evaluation of autonomous healing of geopolymer composites. Infrastructures 6(7):94 Luhar S, Luhar I, Shaikh FUA (2021) Review on performance evaluation of autonomous healing of geopolymer composites. Infrastructures 6(7):94
12.
Zurück zum Zitat Zhang LV et al (2021) Crack self-healing in bio-green concrete, 227:109397 Zhang LV et al (2021) Crack self-healing in bio-green concrete, 227:109397
13.
Zurück zum Zitat Zhang LV et al (2022) Crack self-healing in alkali-activated slag composites incorporating immobilized bacteria, 326:126842 Zhang LV et al (2022) Crack self-healing in alkali-activated slag composites incorporating immobilized bacteria, 326:126842
14.
Zurück zum Zitat Suleiman AR, Zhang LV, Nehdi ML (2021) Quantifying crack self-healing in concrete with superabsorbent polymers under varying temperature and relative humidity. Sustainability 13(24):13999 Suleiman AR, Zhang LV, Nehdi ML (2021) Quantifying crack self-healing in concrete with superabsorbent polymers under varying temperature and relative humidity. Sustainability 13(24):13999
15.
Zurück zum Zitat Suleiman A, Nehdi ML (2021) Effect of autogenous crack self-healing on mechanical strength recovery of cement mortar under various environmental exposure. Sci Rep 11(1):1–14 Suleiman A, Nehdi ML (2021) Effect of autogenous crack self-healing on mechanical strength recovery of cement mortar under various environmental exposure. Sci Rep 11(1):1–14
16.
Zurück zum Zitat Risdanareni P et al (2023) Alkali activated lightweight aggregate as bacterial carrier in manufacturing self-healing mortar, 368:130375 Risdanareni P et al (2023) Alkali activated lightweight aggregate as bacterial carrier in manufacturing self-healing mortar, 368:130375
17.
Zurück zum Zitat Sultan A et al (2023) Experimental evaluation of bacterial self-healing concrete embodying Bacillus Pumilus cured in normal and accelerated modes, 56(2):1–17 Sultan A et al (2023) Experimental evaluation of bacterial self-healing concrete embodying Bacillus Pumilus cured in normal and accelerated modes, 56(2):1–17
18.
Zurück zum Zitat Zhang W et al (2020) Self-healing cement concrete composites for resilient infrastructures: a review, 189:107892 Zhang W et al (2020) Self-healing cement concrete composites for resilient infrastructures: a review, 189:107892
19.
Zurück zum Zitat Hassanzadeh-Aghdam MK, Mahmoodi MJ, Safi M (2019) Effect of adding carbon nanotubes on the thermal conductivity of steel fiber-reinforced concrete. Comp Part B: Eng 174:106972 Hassanzadeh-Aghdam MK, Mahmoodi MJ, Safi M (2019) Effect of adding carbon nanotubes on the thermal conductivity of steel fiber-reinforced concrete. Comp Part B: Eng 174:106972
20.
Zurück zum Zitat Nazerigivi A, Najigivi A (2019) Study on mechanical properties of ternary blended concrete containing two different sizes of nano-SiO2. Comp Part B: Eng 167:20–24 Nazerigivi A, Najigivi A (2019) Study on mechanical properties of ternary blended concrete containing two different sizes of nano-SiO2. Comp Part B: Eng 167:20–24
21.
Zurück zum Zitat Birenboim M et al (2019) Reinforcement and workability aspects of graphene-oxide-reinforced cement nanocomposites, 161:68–76 Birenboim M et al (2019) Reinforcement and workability aspects of graphene-oxide-reinforced cement nanocomposites, 161:68–76
22.
Zurück zum Zitat Kırgız M (2018) Green cement composite concept reinforced by graphite nano-engineered particle suspension for infrastructure renewal material. Comp Part B: Eng 154:423–429 Kırgız M (2018) Green cement composite concept reinforced by graphite nano-engineered particle suspension for infrastructure renewal material. Comp Part B: Eng 154:423–429
23.
Zurück zum Zitat Zhang P et al (2018) A crack healable syntactic foam reinforced by 3D printed healing-agent based honeycomb, 151:25–34 Zhang P et al (2018) A crack healable syntactic foam reinforced by 3D printed healing-agent based honeycomb, 151:25–34
24.
Zurück zum Zitat Kruger J et al (2020) 3D concrete printer parameter optimisation for high rate digital construction avoiding plastic collapse, 183:107660 Kruger J et al (2020) 3D concrete printer parameter optimisation for high rate digital construction avoiding plastic collapse, 183:107660
25.
Zurück zum Zitat Han Bet al (2019) Nano-engineered cementitious composites: principles and practices. Springer Han Bet al (2019) Nano-engineered cementitious composites: principles and practices. Springer
26.
Zurück zum Zitat Suleiman A, Nehdi ML (2018) Effect of environmental exposure on autogenous self-healing of cracked cement-based materials. Cem Concrete Res 111:197–208 Suleiman A, Nehdi ML (2018) Effect of environmental exposure on autogenous self-healing of cracked cement-based materials. Cem Concrete Res 111:197–208
27.
Zurück zum Zitat Nguyễn HH et al (2018) Self-healing properties of cement-based and alkali-activated slag-based fiber-reinforced composites, 165:801–811 Nguyễn HH et al (2018) Self-healing properties of cement-based and alkali-activated slag-based fiber-reinforced composites, 165:801–811
28.
Zurück zum Zitat Nguyễn HH et al (2019) Effects of the type of activator on the self-healing ability of fiber-reinforced alkali-activated slag-based composites at an early age, 224:980–994 Nguyễn HH et al (2019) Effects of the type of activator on the self-healing ability of fiber-reinforced alkali-activated slag-based composites at an early age, 224:980–994
29.
Zurück zum Zitat Choi J-I et al (2021) Effects of fiber hybridization on mechanical properties and autogenous healing of alkali-activated slag-based composites, 310:125280 Choi J-I et al (2021) Effects of fiber hybridization on mechanical properties and autogenous healing of alkali-activated slag-based composites, 310:125280
30.
Zurück zum Zitat Ross JH et al (2022) Permeability recovery by self-healing of class F fly ash-based geopolymers, 10:100048 Ross JH et al (2022) Permeability recovery by self-healing of class F fly ash-based geopolymers, 10:100048
31.
Zurück zum Zitat Reinhardt H-W, Jooss M (2003) Permeability and self-healing of cracked concrete as a function of temperature and crack width. Cem Concrete Res 33(7):981–985 Reinhardt H-W, Jooss M (2003) Permeability and self-healing of cracked concrete as a function of temperature and crack width. Cem Concrete Res 33(7):981–985
32.
Zurück zum Zitat Ali M et al (2015) Self-healing and strength development of geopolymer concrete made with waste by products, 43(2):253–262 Ali M et al (2015) Self-healing and strength development of geopolymer concrete made with waste by products, 43(2):253–262
33.
Zurück zum Zitat Ulugöl H et al (2021) Effects of self-healing on the microstructure, transport, and electrical properties of 100% construction-and demolition-waste-based geopolymer composites, 121:104081 Ulugöl H et al (2021) Effects of self-healing on the microstructure, transport, and electrical properties of 100% construction-and demolition-waste-based geopolymer composites, 121:104081
34.
Zurück zum Zitat Rajczakowska M et al (2019) Does a high amount of unhydrated portland cement ensure an effective autogenous self-healing of mortar? 12(20):3298 Rajczakowska M et al (2019) Does a high amount of unhydrated portland cement ensure an effective autogenous self-healing of mortar? 12(20):3298
35.
Zurück zum Zitat Ismail M et al (2004) Effect of crack opening on the local diffusion of chloride in inert materials, 34(4):711–716 Ismail M et al (2004) Effect of crack opening on the local diffusion of chloride in inert materials, 34(4):711–716
36.
Zurück zum Zitat Ismail M et al (2008) Effect of crack opening on the local diffusion of chloride in cracked mortar samples, 38(8–9):1106–1111 Ismail M et al (2008) Effect of crack opening on the local diffusion of chloride in cracked mortar samples, 38(8–9):1106–1111
37.
Zurück zum Zitat Zhong W, Yao W (2008) Influence of damage degree on self-healing of concrete. Constr Build Mater 22(6):1137–1142 Zhong W, Yao W (2008) Influence of damage degree on self-healing of concrete. Constr Build Mater 22(6):1137–1142
38.
Zurück zum Zitat De Nardi C et al (2017) Effect of age and level of damage on the autogenous healing of lime mortars, 124:144–157 De Nardi C et al (2017) Effect of age and level of damage on the autogenous healing of lime mortars, 124:144–157
39.
Zurück zum Zitat Ding Y et al (2016) Mechanical properties of alkali-activated concrete: a state-of-the-art review, 127:68–79 Ding Y et al (2016) Mechanical properties of alkali-activated concrete: a state-of-the-art review, 127:68–79
40.
Zurück zum Zitat Fan S, Li M (2014) X-ray computed microtomography of three-dimensional microcracks and self-healing in engineered cementitious composites. Smart Mater Struct 24(1):015021 Fan S, Li M (2014) X-ray computed microtomography of three-dimensional microcracks and self-healing in engineered cementitious composites. Smart Mater Struct 24(1):015021
Metadaten
Titel
Autogenous Self-healing of Alkali-Activated Materials: A Review
verfasst von
Ahmed Khaled
Ahmed Soliman
Nourhan Ali
Copyright-Jahr
2025
DOI
https://doi.org/10.1007/978-3-031-61507-8_21