Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

01.11.2019 | Research Article - Special Issue - Intelligent Computing And Interdisciplinary Applications | Ausgabe 4/2020

Arabian Journal for Science and Engineering 4/2020

Automated Detection of Sleep Stages Using Energy-Localized Orthogonal Wavelet Filter Banks

Zeitschrift:
Arabian Journal for Science and Engineering > Ausgabe 4/2020
Autoren:
Manish Sharma, Sohamkumar Patel, Siddhant Choudhary, U. Rajendra Acharya

Abstract

Sleep is an integral part of human life which provides the body with much-needed rest which facilitates recovery and promotes health. Sleep disorders, however, lead to a reduced quality of sleep and as a result, affect the standard of human life. It is important to classify sleep stages in order to detect sleep disorders. Electroencephalogram (EEG) signals are obtained from patients under observation. But, classifying these EEG signals into various sleep stages is an arduous task. It becomes more difficult when one tries to classify EEG signals visually. Even sleep specialists struggle to classify the EEG signals into different sleep stages by visual inspection. Several approaches have been adopted by scientists across the world to mitigate these errors by using EEG and polysomnogram signals. In this paper, an automated method has been proposed for scoring various sleep stages employing EEG signals. We have employed a two-band energy-localized filter in the time-frequency domain, which decomposed six sub-bands using five-level wavelet decomposition. Subsequently, we compute discriminatory features namely fuzzy entropy and log energy from the decomposed coefficients. The extracted features are fed to various supervised machine learning classifiers. Our proposed approach yielded an accuracy of 91.5% and 88.5% for six-class classification task using small and large datasets, respectively.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 4/2020

Arabian Journal for Science and Engineering 4/2020 Zur Ausgabe

Research Article – Special Issue - Intelligent Computing and Interdisciplinary Applications

Analysis of Support Vector Machine-based Intrusion Detection Techniques

RESEARCH ARTICLE - SPECIAL ISSUE - INTELLIGENT COMPUTING and INTERDISCIPLINARY APPLICATIONS

Vehicular Cloud Computing Security: A Survey

RESEARCH ARTICLE - SPECIAL ISSUE - INTELLIGENT COMPUTING and INTERDISCIPLINARY APPLICATIONS

An Efficient Filter-Based Feature Selection Model to Identify Significant Features from High-Dimensional Microarray Data

Premium Partner

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen. 

    Bildnachweise