Skip to main content

17.01.2025

Automated ECG Analysis with Dual-Channel SqueezeNet Using Hilbert Huang Transform, Fuzzy Entropy, and Hurst Exponent

verfasst von: Richel T. Nguimdo, Alain Tiedeu

Erschienen in: Circuits, Systems, and Signal Processing

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Cardiovascular diseases (CVDs) are a major public health concern. Electrocardiograms (ECG) are very often used as a tool for CVD diagnosis. Cardiologists scrutinize ECG, searching for signs for diagnosis. Faced with a growing number of patients, computer-aided analysis of ECGs has been suggested as a second opinion to help cardiologists in their analysis. This work develops an algorithm for ECG computerized analysis. In the method in this paper, we first filter the ECG signal. The filtered signal then undergoes the Hilbert Huang Transform (HHT) on one hand, and both Fuzzy Entropy (FE) and Hurst Exponent (HE), on the other hand. The results of the latter step are fed into a dual-channel (DC) SqueezeNet convolutional neural network (CNN) that classifies the original ECG signal into either atrial fibrillation, atrial flutter, normal sinus, other rhythms, or noisy recording. The tool’s performance thus developed, was assessed using the 2017 PhysioNet/Computing in Cardiology (CinC) dataset and the MIT-BIH atrial fibrillation Database (MIT-BIH AFDB). Experimental results showed that the proposed algorithm yielded an F1 score of 98.1% for atrial fibrillation, 99.5% for normal sinus rhythms, 98.64% for other rhythms, and 97.38% for noisy recording when using the 2017-CinC dataset. As for the MIT-BIH AFDB dataset, we got an F1 score of 98.65% for atrial fibrillation, 97.2% for atrial flutter, and 99.68% for normal sinus rhythm. These results are encouraging and demonstrate the effectiveness of the computerized analysis tool for ECG signals. It can successfully be used as a second opinion and therefore help cardiologists.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

ATZelektronik

Die Fachzeitschrift ATZelektronik bietet für Entwickler und Entscheider in der Automobil- und Zulieferindustrie qualitativ hochwertige und fundierte Informationen aus dem gesamten Spektrum der Pkw- und Nutzfahrzeug-Elektronik. 

Lassen Sie sich jetzt unverbindlich 2 kostenlose Ausgabe zusenden.

ATZelectronics worldwide

ATZlectronics worldwide is up-to-speed on new trends and developments in automotive electronics on a scientific level with a high depth of information. 

Order your 30-days-trial for free and without any commitment.

Weitere Produktempfehlungen anzeigen
Literatur
3.
Zurück zum Zitat F. Andreotti, O. Carr, M. A. Pimentel, A. Mahdi, M. De Vos. Comparing feature-based classifiers and convolutional neural networks to detect arrhythmia from short segments of ECG, in Proceedings of the 2017 Computing in cardiology (CINC,), Rennes, France, 2017,44, 80–83.https://doi.org/10.22489/CinC.2017.360-239 F. Andreotti, O. Carr, M. A. Pimentel, A. Mahdi, M. De Vos. Comparing feature-based classifiers and convolutional neural networks to detect arrhythmia from short segments of ECG, in Proceedings of the 2017 Computing in cardiology (CINC,), Rennes, France, 2017,44, 80–83.https://​doi.​org/​10.​22489/​CinC.​2017.​360-239
8.
Zurück zum Zitat S.S. Chugh, R. Havmoeller, K. Narayanan, D. Singh, M. Rienstra, E.J. Benjamin, R.F. Gillum, Y.-H. Kim, J.H. McAnulty, Z.-J. Zheng, M.H. Forouzanfar, M. Naghavi, G.A. Mensah, M. Ezzati, C.J.L. Murray, Worldwide epidemiology of atrial fibrillation: a global burden of disease 2010 study. Circulation 129(8), 837–847 (2014). https://doi.org/10.1161/CIRCULATIONAHA.113.005119CrossRef S.S. Chugh, R. Havmoeller, K. Narayanan, D. Singh, M. Rienstra, E.J. Benjamin, R.F. Gillum, Y.-H. Kim, J.H. McAnulty, Z.-J. Zheng, M.H. Forouzanfar, M. Naghavi, G.A. Mensah, M. Ezzati, C.J.L. Murray, Worldwide epidemiology of atrial fibrillation: a global burden of disease 2010 study. Circulation 129(8), 837–847 (2014). https://​doi.​org/​10.​1161/​CIRCULATIONAHA.​113.​005119CrossRef
10.
Zurück zum Zitat G. D. Clifford, C. Liu, B. Moody, H. L. Li-wei, I. Silva, Q. Li, R. G. Mark. AF classification from a short single lead ECG recording: The PhysioNet/Computing in cardiology challenge 2017, in Proceedings of the 2017 Computing in Cardiology (CinC), Rennes, France, 2017, 44, 20-23. https://doi.org/10.22489/CinC.2017.065-469 G. D. Clifford, C. Liu, B. Moody, H. L. Li-wei, I. Silva, Q. Li, R. G. Mark. AF classification from a short single lead ECG recording: The PhysioNet/Computing in cardiology challenge 2017, in Proceedings of the 2017 Computing in Cardiology (CinC), Rennes, France, 2017, 44, 20-23. https://​doi.​org/​10.​22489/​CinC.​2017.​065-469
12.
Zurück zum Zitat H. Daji, Z. Jinping, S. Jilan, Practical implementation of Hilbert-Huang transform algorithm. Acta Oceanol. Sin. 1, 1–14 (2003)MATH H. Daji, Z. Jinping, S. Jilan, Practical implementation of Hilbert-Huang transform algorithm. Acta Oceanol. Sin. 1, 1–14 (2003)MATH
16.
Zurück zum Zitat D. DeMazumder, D.E. Lake, A. Cheng, T.J. Moss, E. Guallar, R.G. Weiss, S.R. Jones, G.F. Tomaselli, J.R. Moorman, Dynamic analysis of cardiac rhythms for discriminating atrial fibrillation from lethal ventricular arrhythmias. Circ.: Arrhythmia Electrophysiol. 6(3), 555–561 (2013). https://doi.org/10.1161/CIRCEP.113.000034CrossRef D. DeMazumder, D.E. Lake, A. Cheng, T.J. Moss, E. Guallar, R.G. Weiss, S.R. Jones, G.F. Tomaselli, J.R. Moorman, Dynamic analysis of cardiac rhythms for discriminating atrial fibrillation from lethal ventricular arrhythmias. Circ.: Arrhythmia Electrophysiol. 6(3), 555–561 (2013). https://​doi.​org/​10.​1161/​CIRCEP.​113.​000034CrossRef
27.
Zurück zum Zitat F. P. Karegar, A. Fallah, S. Rashidi, Using recurrence quantification analysis and generalized hurst exponents of ECG for human authentication, in Proceedings of the 2017 2nd Conference on Swarm Intelligence and Evolutionary Computation (CSIEC) Kerman, Iran, 2017,, 66–71. https://doi.org/10.1109/CSIEC.2017.7940172 F. P. Karegar, A. Fallah, S. Rashidi, Using recurrence quantification analysis and generalized hurst exponents of ECG for human authentication, in Proceedings of the 2017 2nd Conference on Swarm Intelligence and Evolutionary Computation (CSIEC) Kerman, Iran, 2017,, 66–71. https://​doi.​org/​10.​1109/​CSIEC.​2017.​7940172
38.
Zurück zum Zitat S. Mendis, K. Thygesen, K. Kuulasmaa, S. Giampaoli, M. Mahonen, K. Ngu Blackett, L. Lisheng, Writing group on behalf of the participating experts of the WHO consultation for revision of WHO definition of myocardial infarction, World Health Organization definition of myocardial infarction: 2008-09 revision. International Journal of Epidemiology, 40(1), 139–146 (2011). https://doi.org/10.1093/ije/dyq165 S. Mendis, K. Thygesen, K. Kuulasmaa, S. Giampaoli, M. Mahonen, K. Ngu Blackett, L. Lisheng, Writing group on behalf of the participating experts of the WHO consultation for revision of WHO definition of myocardial infarction, World Health Organization definition of myocardial infarction: 2008-09 revision. International Journal of Epidemiology, 40(1), 139–146 (2011). https://​doi.​org/​10.​1093/​ije/​dyq165
40.
Zurück zum Zitat H. M. Oh, H. Lee, M. Y. Kim, Comparing Convolutional Neural Network (CNN) models for machine learning-based drone and bird classification of anti-drone system, in Proceedings of the 2019 19th International Conference on Control, Automation and Systems (ICCAS) Jeju, Korea, 2019, 87–90. (2019) https://doi.org/10.23919/ICCAS47443.2019.8971699 H. M. Oh, H. Lee, M. Y. Kim, Comparing Convolutional Neural Network (CNN) models for machine learning-based drone and bird classification of anti-drone system, in Proceedings of the 2019 19th International Conference on Control, Automation and Systems (ICCAS) Jeju, Korea, 2019, 87–90. (2019) https://​doi.​org/​10.​23919/​ICCAS47443.​2019.​8971699
46.
Zurück zum Zitat K. F. Tan, K. L. Chan, K. Choi, Detection of the QRS complex, P wave and T wave in electrocardiogram, in 2000 First International Conference Advances in Medical Signal and Information Processing (IEE Conf. Publ. No. 476), Bristol, UK, 2000, 41-47 (2000). https://doi.org/10.1049/cp:20000315 K. F. Tan, K. L. Chan, K. Choi, Detection of the QRS complex, P wave and T wave in electrocardiogram, in 2000 First International Conference Advances in Medical Signal and Information Processing (IEE Conf. Publ. No. 476), Bristol, UK, 2000, 41-47 (2000). https://​doi.​org/​10.​1049/​cp:​20000315
Metadaten
Titel
Automated ECG Analysis with Dual-Channel SqueezeNet Using Hilbert Huang Transform, Fuzzy Entropy, and Hurst Exponent
verfasst von
Richel T. Nguimdo
Alain Tiedeu
Publikationsdatum
17.01.2025
Verlag
Springer US
Erschienen in
Circuits, Systems, and Signal Processing
Print ISSN: 0278-081X
Elektronische ISSN: 1531-5878
DOI
https://doi.org/10.1007/s00034-024-02986-7