Skip to main content

2022 | OriginalPaper | Buchkapitel

Automated Endurance Testing and an Outlook to AI

verfasst von : Fabian Pfitz, Schaefer Max

Erschienen in: 12th International Munich Chassis Symposium 2021

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the 21st century, also known as the century of automation, automated endurance testing of e.g. chassis components will become more and more important in order to be competitive to other vehicle manufacturers. Automation can not only can guarantee the reproducibility between different test runs and thus shortens the development time and costs of vehicle components, but also enables us to test complex maneuvers of an interacting vehicle fleet e.g. highway pilot (ADAS). Thus, automated testing will become absolutely mandatory in future. In the following, we will discuss in detail the newly and self-developed software components that enables us to automate the testing of e.g. chassis components. Finally, we will give an overview of the advantages and disadvantages of the proposed solution and will discuss how to embed artificial intelligence (AI) into a predictive control design. We will highlight the difference between learning-based and non-learning based control and will end with simulation and experimental data.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
[1]
Zurück zum Zitat Köhl M (1991) Anzahl Wiederholungen bei der Versuchsplanung. Verlag Paul Parey 110(1):95–103 Köhl M (1991) Anzahl Wiederholungen bei der Versuchsplanung. Verlag Paul Parey 110(1):95–103
[2]
Zurück zum Zitat Bhattacharyya SP et al (2001) Linear control theory: structure, robustness, and optimization Bhattacharyya SP et al (2001) Linear control theory: structure, robustness, and optimization
[3]
Zurück zum Zitat Capcha MA et al (2017) Comparison of model-based and non-model-based strategies for nonlinear control of a three-tank system. 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), pp. 1–4 Capcha MA et al (2017) Comparison of model-based and non-model-based strategies for nonlinear control of a three-tank system. 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), pp. 1–4
[4]
Zurück zum Zitat Isidori A (2013) Nonlinear control systems Isidori A (2013) Nonlinear control systems
[5]
Zurück zum Zitat Forbes MG et al (2015) Model predictive control in industry: challenges and opportunities. IFAC-PapersOnLine 48:531–538 Forbes MG et al (2015) Model predictive control in industry: challenges and opportunities. IFAC-PapersOnLine 48:531–538
[6]
Zurück zum Zitat Feller C, Ebenbauer C (2016) Relaxed logarithmic barrier function based model predictive control of linear systems. IEEE Transactions on Automation Control 62:1223–1238MathSciNetCrossRef Feller C, Ebenbauer C (2016) Relaxed logarithmic barrier function based model predictive control of linear systems. IEEE Transactions on Automation Control 62:1223–1238MathSciNetCrossRef
[7]
Zurück zum Zitat Feller C, Ebenbauer C (2017) A stabilizing iteration scheme for model predictive control based on relaxed barrier function. Automatica 80:328–339MathSciNetCrossRef Feller C, Ebenbauer C (2017) A stabilizing iteration scheme for model predictive control based on relaxed barrier function. Automatica 80:328–339MathSciNetCrossRef
[8]
Zurück zum Zitat Pfitz F, Braun M, Ebenbauer C (2019) Relaxed barrier MPC for reference tracking: Theoretical and experimental studies. VDI-Berichte 2349 AUTOREG vol. Mannheim Germany, pp. 97–110 Pfitz F, Braun M, Ebenbauer C (2019) Relaxed barrier MPC for reference tracking: Theoretical and experimental studies. VDI-Berichte 2349 AUTOREG vol. Mannheim Germany, pp. 97–110
[9]
Zurück zum Zitat Maciejowski JM (2002) Predictive Control: With Constraints Maciejowski JM (2002) Predictive Control: With Constraints
[10]
Zurück zum Zitat Mayne DQ et al (2000) Constrained model predictive control: stability and optimality. Automatica 36:789–814MathSciNetCrossRef Mayne DQ et al (2000) Constrained model predictive control: stability and optimality. Automatica 36:789–814MathSciNetCrossRef
[11]
Zurück zum Zitat Pajeca H, Besselink I (2012) Tire and vehicle dynamics Pajeca H, Besselink I (2012) Tire and vehicle dynamics
[12]
Zurück zum Zitat Ebenbauer C, Pfitz F, Yu S (2020) Control of Unknown (Linear) Systems with Receding Horizon Learning Ebenbauer C, Pfitz F, Yu S (2020) Control of Unknown (Linear) Systems with Receding Horizon Learning
[13]
Zurück zum Zitat Terzi E, Farina M, Fagiano L, Scattolini R (2019) Learning-based predictive control for linear systems: a unitary approach. Automatica 108(11):108473 Terzi E, Farina M, Fagiano L, Scattolini R (2019) Learning-based predictive control for linear systems: a unitary approach. Automatica 108(11):108473
[14]
Zurück zum Zitat Benosman M (2016) Learning-based adaptive control: an extremum seeking approach – theory and applications. Elsevier Science Benosman M (2016) Learning-based adaptive control: an extremum seeking approach – theory and applications. Elsevier Science
[15]
Zurück zum Zitat Mosca E (1994) Optimal, predictive, and adaptive control. Prentice-Hall, Inc Mosca E (1994) Optimal, predictive, and adaptive control. Prentice-Hall, Inc
[16]
Zurück zum Zitat Peterka V (1984) Predictor-based self-tuning control. Automatica 20(1):39–50CrossRef Peterka V (1984) Predictor-based self-tuning control. Automatica 20(1):39–50CrossRef
[17]
Zurück zum Zitat Feldbaum AA (1960) Dual control theory. i. Avtomat. i Telemekh. 21:1240–1249MathSciNet Feldbaum AA (1960) Dual control theory. i. Avtomat. i Telemekh. 21:1240–1249MathSciNet
[18]
[19]
Zurück zum Zitat Bittanti S, Bolzern P, Campi M (1990) Recursive least-squares identification algorithms with incomplete excitation: convergence analysis and application to adaptive control. IEEE Transactions on Automatic Control 35(12):1371–1373MathSciNetCrossRef Bittanti S, Bolzern P, Campi M (1990) Recursive least-squares identification algorithms with incomplete excitation: convergence analysis and application to adaptive control. IEEE Transactions on Automatic Control 35(12):1371–1373MathSciNetCrossRef
[20]
Zurück zum Zitat Bittanti S, Campi M (2006) Adaptive control of linear time invariant systems: The “bet on the best" principle. Communications in Information and Systems 6(4):299–320MathSciNetCrossRef Bittanti S, Campi M (2006) Adaptive control of linear time invariant systems: The “bet on the best" principle. Communications in Information and Systems 6(4):299–320MathSciNetCrossRef
Metadaten
Titel
Automated Endurance Testing and an Outlook to AI
verfasst von
Fabian Pfitz
Schaefer Max
Copyright-Jahr
2022
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-64550-5_11

Premium Partner