Skip to main content

2021 | OriginalPaper | Buchkapitel

Automated Evaluation of Indoor Dimensional Tolerance Compliance Using the TLS Data and BIM

verfasst von : Dongdong Tang, Shenghan Li, Qian Wang, Silin Li, Ruying Cai, Yi Tan

Erschienen in: Proceedings of the 25th International Symposium on Advancement of Construction Management and Real Estate

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

As commercial residential building prices are getting increasingly expensive, whether the dimensions of building components to be delivered conforms to the design codes is significantly important to the owner. However, the current dimension assessment is still manually conducted with field measurement, which is error-prone and time-consuming. To improve the assessment efficiency and accuracy, this study presents an automated geometric quality assessment technique which measures the dimensions of indoor components by means of the terrestrial laser scanning (TLS). The point cloud data obtained by the TLS is reversely reconstructed into a three-dimensional model, representing as-built model of the building. Building information model (BIM) stores rich geometric information, which represents as-designed model of the building. Then, “Scan-vs-BIM” systems, which are based on comparing the as-built point cloud model with as-designed BIM models, can effectively detect the dimension discrepancy of indoor components and provide decision-making basis for the local detection. Experiments using the commercial residential building are conducted and the result that the presented method can effectively and accurately evaluate the building dimensional tolerance compliance.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Abu Dabous, S., & Feroz, S. (2020). Condition monitoring of bridges with non-contact testing technologies. Automation in Construction, 116. Abu Dabous, S., & Feroz, S. (2020). Condition monitoring of bridges with non-contact testing technologies. Automation in Construction, 116.
2.
Zurück zum Zitat Guan, G., & Gu, W. W. (2019). Reconstruction of propeller and complex ship hull surface based on reverse engineering. Journal of Marine Science and Technology-Taiwan, 27(6), 498–504. Guan, G., & Gu, W. W. (2019). Reconstruction of propeller and complex ship hull surface based on reverse engineering. Journal of Marine Science and Technology-Taiwan, 27(6), 498–504.
3.
Zurück zum Zitat Tang, P. B., et al. (2010). Automatic reconstruction of as-built building information models from laser-scanned point clouds: A review of related techniques. Automation in Construction, 19(7), 829–843.CrossRef Tang, P. B., et al. (2010). Automatic reconstruction of as-built building information models from laser-scanned point clouds: A review of related techniques. Automation in Construction, 19(7), 829–843.CrossRef
4.
Zurück zum Zitat Barbarella, M., et al. (2019). Topographic base maps from remote sensing data for engineering geomorphological modelling: An application on coastal mediterranean landscape. Geosciences, 9(12), 29.CrossRef Barbarella, M., et al. (2019). Topographic base maps from remote sensing data for engineering geomorphological modelling: An application on coastal mediterranean landscape. Geosciences, 9(12), 29.CrossRef
5.
Zurück zum Zitat Siebert, S., & Teizer, J. (2014). Mobile 3D mapping for surveying earthwork projects using an unmanned aerial vehicle (UAV) system. Automation in Construction, 41, 1–14.CrossRef Siebert, S., & Teizer, J. (2014). Mobile 3D mapping for surveying earthwork projects using an unmanned aerial vehicle (UAV) system. Automation in Construction, 41, 1–14.CrossRef
6.
Zurück zum Zitat Olsen Michael, J., et al. (2010). Terrestrial laser scanning-based structural damage assessment. Journal of Computing in Civil Engineering, 24(3), 264–272.CrossRef Olsen Michael, J., et al. (2010). Terrestrial laser scanning-based structural damage assessment. Journal of Computing in Civil Engineering, 24(3), 264–272.CrossRef
7.
Zurück zum Zitat Riveiro, B., DeJong, M. J., & Conde, B. (2016). Automated processing of large point clouds for structural health monitoring of masonry arch bridges. Automation in Construction, 72, 258–268.CrossRef Riveiro, B., DeJong, M. J., & Conde, B. (2016). Automated processing of large point clouds for structural health monitoring of masonry arch bridges. Automation in Construction, 72, 258–268.CrossRef
8.
Zurück zum Zitat Kim, C., Son, H., & Kim, C. (2013). Automated construction progress measurement using a 4D building information model and 3D data. Automation in Construction, 31, 75–82.CrossRef Kim, C., Son, H., & Kim, C. (2013). Automated construction progress measurement using a 4D building information model and 3D data. Automation in Construction, 31, 75–82.CrossRef
9.
Zurück zum Zitat Pucko, Z., Suman, N., & Rebolj, D. (2018). Automated continuous construction progress monitoring using multiple workplace real time 3D scans. Advanced Engineering Informatics, 38, 27–40.CrossRef Pucko, Z., Suman, N., & Rebolj, D. (2018). Automated continuous construction progress monitoring using multiple workplace real time 3D scans. Advanced Engineering Informatics, 38, 27–40.CrossRef
10.
Zurück zum Zitat Wang, Q., et al. (2016). Automated quality assessment of precast concrete elements with geometry irregularities using terrestrial laser scanning. Automation in Construction, 68, 170–182.CrossRef Wang, Q., et al. (2016). Automated quality assessment of precast concrete elements with geometry irregularities using terrestrial laser scanning. Automation in Construction, 68, 170–182.CrossRef
11.
Zurück zum Zitat Kim, M. K., et al. (2016). Automated dimensional quality assurance of full-scale precast concrete elements using laser scanning and BIM. Automation in Construction, 72, 102–114.CrossRef Kim, M. K., et al. (2016). Automated dimensional quality assurance of full-scale precast concrete elements using laser scanning and BIM. Automation in Construction, 72, 102–114.CrossRef
12.
Zurück zum Zitat Anil, E. B., et al. (2013). Deviation analysis method for the assessment of the quality of the as-is building information models generated from point cloud data. Automation in Construction, 35, 507–516.CrossRef Anil, E. B., et al. (2013). Deviation analysis method for the assessment of the quality of the as-is building information models generated from point cloud data. Automation in Construction, 35, 507–516.CrossRef
13.
Zurück zum Zitat Ghahremani, K., et al. (2015). Quality assurance for high-frequency mechanical impact (HFMI) treatment of welds using handheld 3D laser scanning technology. Welding in the World, 59(3), 391–400.CrossRef Ghahremani, K., et al. (2015). Quality assurance for high-frequency mechanical impact (HFMI) treatment of welds using handheld 3D laser scanning technology. Welding in the World, 59(3), 391–400.CrossRef
14.
Zurück zum Zitat Fox, M., et al. (2015). Time-lapse thermography for building defect detection. Energy and Buildings, 92, 95–106.CrossRef Fox, M., et al. (2015). Time-lapse thermography for building defect detection. Energy and Buildings, 92, 95–106.CrossRef
15.
Zurück zum Zitat Malpica, J. A., et al. (2013). Change detection of buildings from satellite imagery and lidar data. International Journal of Remote Sensing, 34(5), 1652–1675.CrossRef Malpica, J. A., et al. (2013). Change detection of buildings from satellite imagery and lidar data. International Journal of Remote Sensing, 34(5), 1652–1675.CrossRef
16.
Zurück zum Zitat Vetrivel, A., et al. (2015). Identification of damage in buildings based on gaps in 3D point clouds from very high resolution oblique airborne images. ISPRS Journal of Photogrammetry and Remote Sensing, 105, 61–78.CrossRef Vetrivel, A., et al. (2015). Identification of damage in buildings based on gaps in 3D point clouds from very high resolution oblique airborne images. ISPRS Journal of Photogrammetry and Remote Sensing, 105, 61–78.CrossRef
17.
Zurück zum Zitat Park, J.-W., et al. (2010). Vision-based displacement measurement method for high-rise building structures using partitioning approach. NDT & E International, 43(7), 642–647.CrossRef Park, J.-W., et al. (2010). Vision-based displacement measurement method for high-rise building structures using partitioning approach. NDT & E International, 43(7), 642–647.CrossRef
18.
Zurück zum Zitat Xu, Y. Y., et al. (2020). Building crack monitoring based on digital image processing. Frattura Ed Integrita Strutturale, 52, 1–8. Xu, Y. Y., et al. (2020). Building crack monitoring based on digital image processing. Frattura Ed Integrita Strutturale, 52, 1–8.
19.
Zurück zum Zitat Huang, F. H., Yu, Y., & Feng, T. H. (2019). Automatic building change image quality assessment in high resolution remote sensing based on deep learning. Journal of Visual Communication and Image Representation, 63, 10. Huang, F. H., Yu, Y., & Feng, T. H. (2019). Automatic building change image quality assessment in high resolution remote sensing based on deep learning. Journal of Visual Communication and Image Representation, 63, 10.
20.
Zurück zum Zitat Sun, S., & Salvaggio, C. (2013). Aerial 3D building detection and modeling from airborne LiDAR point clouds. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6(3), 1440–1449.CrossRef Sun, S., & Salvaggio, C. (2013). Aerial 3D building detection and modeling from airborne LiDAR point clouds. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6(3), 1440–1449.CrossRef
21.
Zurück zum Zitat Li, J., & Cheng, X. (2019). Straight-line-segment feature-extraction method for building-facade point-cloud data. Chinese Journal of Lasers, 46(11). Li, J., & Cheng, X. (2019). Straight-line-segment feature-extraction method for building-facade point-cloud data. Chinese Journal of Lasers, 46(11).
22.
Zurück zum Zitat Ahmed, M. F., Haas, C. T., & Haas, R. (2014). Automatic detection of cylindrical objects in built facilities. Journal of Computing in Civil Engineering, 28(3), 11.CrossRef Ahmed, M. F., Haas, C. T., & Haas, R. (2014). Automatic detection of cylindrical objects in built facilities. Journal of Computing in Civil Engineering, 28(3), 11.CrossRef
23.
Zurück zum Zitat Bosche, F., & Haas, C. T. (2008). Automated retrieval of 3D CAD model objects in construction range images. Automation in Construction, 17(4), 499–512.CrossRef Bosche, F., & Haas, C. T. (2008). Automated retrieval of 3D CAD model objects in construction range images. Automation in Construction, 17(4), 499–512.CrossRef
24.
Zurück zum Zitat Frias, E., et al. (2019). From BIM to scan planning and optimization for construction control. Remote Sensing, 11(17), 26.CrossRef Frias, E., et al. (2019). From BIM to scan planning and optimization for construction control. Remote Sensing, 11(17), 26.CrossRef
25.
Zurück zum Zitat Turkan, Y., et al. (2013). Tracking secondary and temporary concrete construction objects using 3D imaging technologies. In Computing in Civil Engineering. 2013 ASCE International Workshop on Computing in Civil Engineering. Proceedings (pp. 749–756). Turkan, Y., et al. (2013). Tracking secondary and temporary concrete construction objects using 3D imaging technologies. In Computing in Civil Engineering. 2013 ASCE International Workshop on Computing in Civil Engineering. Proceedings (pp. 749–756).
26.
Zurück zum Zitat Bosché, F., et al. (2015). The value of integrating Scan-to-BIM and Scan-vs-BIM techniques for construction monitoring using laser scanning and BIM: The case of cylindrical MEP components. Automation in Construction, 49, 201–213.CrossRef Bosché, F., et al. (2015). The value of integrating Scan-to-BIM and Scan-vs-BIM techniques for construction monitoring using laser scanning and BIM: The case of cylindrical MEP components. Automation in Construction, 49, 201–213.CrossRef
27.
Zurück zum Zitat Guo, J., Wang, Q., & Park, J.-H. (2020). Geometric quality inspection of prefabricated MEP modules with 3D laser scanning. Automation in Construction, 111, 103053. Guo, J., Wang, Q., & Park, J.-H. (2020). Geometric quality inspection of prefabricated MEP modules with 3D laser scanning. Automation in Construction, 111, 103053.
28.
Zurück zum Zitat Wang, Q., Cheng, J. C. P., & Sohn, H. (2017). Automated estimation of reinforced precast concrete rebar positions using colored laser scan data. Computer-aided Civil and Infrastructure Engineering, 32(9), 787–802.CrossRef Wang, Q., Cheng, J. C. P., & Sohn, H. (2017). Automated estimation of reinforced precast concrete rebar positions using colored laser scan data. Computer-aided Civil and Infrastructure Engineering, 32(9), 787–802.CrossRef
29.
Zurück zum Zitat Turner, D., Lucieer, A., & Watson, C. (2012). An automated technique for generating georectified mosaics from ultra-high resolution unmanned aerial vehicle (UAV) imagery, based on structure from motion (SfM) point clouds. Remote Sensing, 4(5), 1392–1410.CrossRef Turner, D., Lucieer, A., & Watson, C. (2012). An automated technique for generating georectified mosaics from ultra-high resolution unmanned aerial vehicle (UAV) imagery, based on structure from motion (SfM) point clouds. Remote Sensing, 4(5), 1392–1410.CrossRef
30.
Zurück zum Zitat dos Santos, D. R., Dal Poz, A. P., & Khoshelham, K. (2013). Indirect georeferencing of terrestrial laser scanning data using control lines. Photogrammetric Record, 28(143), 276–292.CrossRef dos Santos, D. R., Dal Poz, A. P., & Khoshelham, K. (2013). Indirect georeferencing of terrestrial laser scanning data using control lines. Photogrammetric Record, 28(143), 276–292.CrossRef
31.
Zurück zum Zitat Wu, X. L., Zhang, X. J., & Wang, X. H. (2009). Low bit-rate image compression via adaptive down-sampling and constrained least squares upconversion. IEEE Transactions on Image Processing, 18(3), 552–561.CrossRef Wu, X. L., Zhang, X. J., & Wang, X. H. (2009). Low bit-rate image compression via adaptive down-sampling and constrained least squares upconversion. IEEE Transactions on Image Processing, 18(3), 552–561.CrossRef
32.
Zurück zum Zitat Brie, D., et al. (2016). Local surface sampling step estimation for extracting boundaries of planar point clouds. Isprs Journal of Photogrammetry and Remote Sensing, 119, 309–319.CrossRef Brie, D., et al. (2016). Local surface sampling step estimation for extracting boundaries of planar point clouds. Isprs Journal of Photogrammetry and Remote Sensing, 119, 309–319.CrossRef
33.
Zurück zum Zitat Cirak, F., Ortiz, M., & Schroder, P. (2000). Subdivision surfaces: A new paradigm for thin-shell finite-element analysis. International Journal for Numerical Methods in Engineering, 47(12), 2039–2072.CrossRef Cirak, F., Ortiz, M., & Schroder, P. (2000). Subdivision surfaces: A new paradigm for thin-shell finite-element analysis. International Journal for Numerical Methods in Engineering, 47(12), 2039–2072.CrossRef
34.
Zurück zum Zitat Reif, U. (1995). A unified approach to subdivision algorithms near extraordinary vertices. Computer Aided Geometric Design, 12(2), 153–174.CrossRef Reif, U. (1995). A unified approach to subdivision algorithms near extraordinary vertices. Computer Aided Geometric Design, 12(2), 153–174.CrossRef
35.
Zurück zum Zitat Besl, P. J., & McKay, N. D. (1992). A method for registration of 3-D shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(2), 239–256.CrossRef Besl, P. J., & McKay, N. D. (1992). A method for registration of 3-D shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(2), 239–256.CrossRef
36.
Zurück zum Zitat Bosché, F. (2012). Plane-based registration of construction laser scans with 3D/4D building models. Advanced Engineering Informatics, 26(1), 90–102.CrossRef Bosché, F. (2012). Plane-based registration of construction laser scans with 3D/4D building models. Advanced Engineering Informatics, 26(1), 90–102.CrossRef
37.
Zurück zum Zitat Bueno, M., et al. (2018). 4-Plane congruent sets for automatic registration of as-is 3D point clouds with 3D BIM models. Automation in Construction, 89, 120–134.CrossRef Bueno, M., et al. (2018). 4-Plane congruent sets for automatic registration of as-is 3D point clouds with 3D BIM models. Automation in Construction, 89, 120–134.CrossRef
38.
Zurück zum Zitat Stoddart, A. J., & Hilton, A. (1996). Registration of multiple point sets. In Proceedings of the 13th International Conference on Pattern Recognition (vol. 2, pp. 40–44). Stoddart, A. J., & Hilton, A. (1996). Registration of multiple point sets. In Proceedings of the 13th International Conference on Pattern Recognition (vol. 2, pp. 40–44).
39.
Zurück zum Zitat Xiong, X., et al. (2013). Automatic creation of semantically rich 3D building models from laser scanner data. Automation in Construction, 31, 325–337.CrossRef Xiong, X., et al. (2013). Automatic creation of semantically rich 3D building models from laser scanner data. Automation in Construction, 31, 325–337.CrossRef
Metadaten
Titel
Automated Evaluation of Indoor Dimensional Tolerance Compliance Using the TLS Data and BIM
verfasst von
Dongdong Tang
Shenghan Li
Qian Wang
Silin Li
Ruying Cai
Yi Tan
Copyright-Jahr
2021
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-16-3587-8_41