Skip to main content

2023 | OriginalPaper | Buchkapitel

Automated Hand-Raising Detection in Classroom Videos: A View-Invariant and Occlusion-Robust Machine Learning Approach

verfasst von : Babette Bühler, Ruikun Hou, Efe Bozkir, Patricia Goldberg, Peter Gerjets, Ulrich Trautwein, Enkelejda Kasneci

Erschienen in: Artificial Intelligence in Education

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Hand-raising signals students’ willingness to participate actively in the classroom discourse. It has been linked to academic achievement and cognitive engagement of students and constitutes an observable indicator of behavioral engagement. However, due to the large amount of effort involved in manual hand-raising annotation by human observers, research on this phenomenon, enabling teachers to understand and foster active classroom participation, is still scarce. An automated detection approach of hand-raising events in classroom videos can offer a time- and cost-effective substitute for manual coding. From a technical perspective, the main challenges for automated detection in the classroom setting are diverse camera angles and student occlusions. In this work, we propose utilizing and further extending a novel view-invariant, occlusion-robust machine learning approach with long short-term memory networks for hand-raising detection in classroom videos based on body pose estimation. We employed a dataset stemming from 36 real-world classroom videos, capturing 127 students from grades 5 to 12 and 2442 manually annotated authentic hand-raising events. Our temporal model trained on body pose embeddings achieved an \(F_{1}\) score of 0.76. When employing this approach for the automated annotation of hand-raising instances, a mean absolute error of 3.76 for the number of detected hand-raisings per student, per lesson was achieved. We demonstrate its application by investigating the relationship between hand-raising events and self-reported cognitive engagement, situational interest, and involvement using manually annotated and automatically detected hand-raising instances. Furthermore, we discuss the potential of our approach to enable future large-scale research on student participation, as well as privacy-preserving data collection in the classroom context.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ahuja, K., et al.: Edusense: practical classroom sensing at scale. Proc. ACM Interact. Mob. Wearable Ubiquit. Technol. 3(3), 1–26 (2019)CrossRef Ahuja, K., et al.: Edusense: practical classroom sensing at scale. Proc. ACM Interact. Mob. Wearable Ubiquit. Technol. 3(3), 1–26 (2019)CrossRef
2.
Zurück zum Zitat Böheim, R., Knogler, M., Kosel, C., Seidel, T.: Exploring student hand-raising across two school subjects using mixed methods: an investigation of an everyday classroom behavior from a motivational perspective. Learn. Instr. 65, 101250 (2020)CrossRef Böheim, R., Knogler, M., Kosel, C., Seidel, T.: Exploring student hand-raising across two school subjects using mixed methods: an investigation of an everyday classroom behavior from a motivational perspective. Learn. Instr. 65, 101250 (2020)CrossRef
3.
Zurück zum Zitat Böheim, R., Urdan, T., Knogler, M., Seidel, T.: Student hand-raising as an indicator of behavioral engagement and its role in classroom learning. Contemp. Educ. Psychol. 62, 101894 (2020)CrossRef Böheim, R., Urdan, T., Knogler, M., Seidel, T.: Student hand-raising as an indicator of behavioral engagement and its role in classroom learning. Contemp. Educ. Psychol. 62, 101894 (2020)CrossRef
4.
Zurück zum Zitat Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: OpenPose: realtime multi-person 2D pose estimation using part affinity fields. IEEE Trans. Pattern Anal. Mach. Intell. 43, 172–186 (2019)CrossRef Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: OpenPose: realtime multi-person 2D pose estimation using part affinity fields. IEEE Trans. Pattern Anal. Mach. Intell. 43, 172–186 (2019)CrossRef
5.
Zurück zum Zitat Dutta, A., Zisserman, A.: The via annotation software for images, audio and video. In: ACM International Conference on Multimedia, pp. 2276–2279 (2019) Dutta, A., Zisserman, A.: The via annotation software for images, audio and video. In: ACM International Conference on Multimedia, pp. 2276–2279 (2019)
6.
Zurück zum Zitat Frank, B.: Presence messen in laborbasierter Forschung mit Mikrowelten: Entwicklung und erste Validierung eines Fragebogens zur Messung von Presence. Springer, Heidelberg (2014) Frank, B.: Presence messen in laborbasierter Forschung mit Mikrowelten: Entwicklung und erste Validierung eines Fragebogens zur Messung von Presence. Springer, Heidelberg (2014)
7.
Zurück zum Zitat Goldberg, P., et al.: Attentive or not? Toward a machine learning approach to assessing students’ visible engagement in classroom instruction. Educ. Psychol. Rev. 33, 27–49 (2021)CrossRef Goldberg, P., et al.: Attentive or not? Toward a machine learning approach to assessing students’ visible engagement in classroom instruction. Educ. Psychol. Rev. 33, 27–49 (2021)CrossRef
8.
Zurück zum Zitat Zhou, H., Jiang, F., Shen, R.: Who are raising their hands? Hand-raiser seeking based on object detection and pose estimation. In: Asian Conference on Machine Learning, pp. 470–485 (2018) Zhou, H., Jiang, F., Shen, R.: Who are raising their hands? Hand-raiser seeking based on object detection and pose estimation. In: Asian Conference on Machine Learning, pp. 470–485 (2018)
9.
Zurück zum Zitat Ionescu, C., Papava, D., Olaru, V., Sminchisescu, C.: Human3.6M: large scale datasets and predictive methods for 3D human sensing in natural environments. IEEE Trans. Pattern Anal. Mach. Intell. 36(7), 1325–1339 (2014)CrossRef Ionescu, C., Papava, D., Olaru, V., Sminchisescu, C.: Human3.6M: large scale datasets and predictive methods for 3D human sensing in natural environments. IEEE Trans. Pattern Anal. Mach. Intell. 36(7), 1325–1339 (2014)CrossRef
10.
Zurück zum Zitat Knogler, M., Harackiewicz, J.M., Gegenfurtner, A., Lewalter, D.: How situational is situational interest? Investigating the longitudinal structure of situational interest. Contemp. Educ. Psychol. 43, 39–50 (2015)CrossRef Knogler, M., Harackiewicz, J.M., Gegenfurtner, A., Lewalter, D.: How situational is situational interest? Investigating the longitudinal structure of situational interest. Contemp. Educ. Psychol. 43, 39–50 (2015)CrossRef
11.
Zurück zum Zitat Liao, W., Xu, W., Kong, S., Ahmad, F., Liu, W.: A two-stage method for hand-raising gesture recognition in classroom. In: International Conference on Educational and Information Technology. ACM (2019) Liao, W., Xu, W., Kong, S., Ahmad, F., Liu, W.: A two-stage method for hand-raising gesture recognition in classroom. In: International Conference on Educational and Information Technology. ACM (2019)
12.
Zurück zum Zitat Lin, F.C., Ngo, H.H., Dow, C.R., Lam, K.H., Le, H.L.: Student behavior recognition system for the classroom environment based on skeleton pose estimation and person detection. Sensors 21(16), 5314 (2021)CrossRef Lin, F.C., Ngo, H.H., Dow, C.R., Lam, K.H., Le, H.L.: Student behavior recognition system for the classroom environment based on skeleton pose estimation and person detection. Sensors 21(16), 5314 (2021)CrossRef
13.
Zurück zum Zitat Liu, T., et al.: View-invariant, occlusion-robust probabilistic embedding for human pose. Int. J. Comput. Vis. 130(1), 111–135 (2022)CrossRef Liu, T., et al.: View-invariant, occlusion-robust probabilistic embedding for human pose. Int. J. Comput. Vis. 130(1), 111–135 (2022)CrossRef
14.
Zurück zum Zitat Nguyen, P.D., et al.: A new dataset and systematic evaluation of deep learning models for student activity recognition from classroom videos. In: International Conference on Multimedia Analysis and Pattern Recognition. IEEE (2022) Nguyen, P.D., et al.: A new dataset and systematic evaluation of deep learning models for student activity recognition from classroom videos. In: International Conference on Multimedia Analysis and Pattern Recognition. IEEE (2022)
15.
Zurück zum Zitat Rimm-Kaufman, S.E., Baroody, A.E., Larsen, R.A., Curby, T.W., Abry, T.: To what extent do teacher-student interaction quality and student gender contribute to fifth graders’ engagement in mathematics learning? J. Educ. Psychol. 107(1), 170 (2015)CrossRef Rimm-Kaufman, S.E., Baroody, A.E., Larsen, R.A., Curby, T.W., Abry, T.: To what extent do teacher-student interaction quality and student gender contribute to fifth graders’ engagement in mathematics learning? J. Educ. Psychol. 107(1), 170 (2015)CrossRef
16.
Zurück zum Zitat Sedova, K., et al.: Do those who talk more learn more? The relationship between student classroom talk and student achievement. Learn. Instr. 63, 101217 (2019)CrossRef Sedova, K., et al.: Do those who talk more learn more? The relationship between student classroom talk and student achievement. Learn. Instr. 63, 101217 (2019)CrossRef
17.
Zurück zum Zitat Si, J., Lin, J., Jiang, F., Shen, R.: Hand-raising gesture detection in real classrooms using improved R-FCN. Neurocomputing 359, 69–76 (2019)CrossRef Si, J., Lin, J., Jiang, F., Shen, R.: Hand-raising gesture detection in real classrooms using improved R-FCN. Neurocomputing 359, 69–76 (2019)CrossRef
19.
Zurück zum Zitat Yu-Te, K., Han-Yen, Y., Yi-Chi, C.: A classroom atmosphere management system for analyzing human behaviors in class activities. In: International Conference on Artificial Intelligence in Information and Communication. IEEE (2019) Yu-Te, K., Han-Yen, Y., Yi-Chi, C.: A classroom atmosphere management system for analyzing human behaviors in class activities. In: International Conference on Artificial Intelligence in Information and Communication. IEEE (2019)
20.
Zurück zum Zitat Zhang, S., Liu, X., Xiao, J.: On geometric features for skeleton-based action recognition using multilayer LSTM networks. In: IEEE Winter Conference on Applications of Computer Vision, pp. 148–157 (2017) Zhang, S., Liu, X., Xiao, J.: On geometric features for skeleton-based action recognition using multilayer LSTM networks. In: IEEE Winter Conference on Applications of Computer Vision, pp. 148–157 (2017)
21.
Zurück zum Zitat Jie, Y., Cooperstock, J.R.: Arm gesture detection in a classroom environment. In: Sixth IEEE Workshop on Applications of Computer Vision (2002). ISBN 0769518583 Jie, Y., Cooperstock, J.R.: Arm gesture detection in a classroom environment. In: Sixth IEEE Workshop on Applications of Computer Vision (2002). ISBN 0769518583
22.
Zurück zum Zitat Bo, N.B., van Hese, P., van Cauwelaert, D., Veelaert, P., Philips, W.: Detection of a hand-raising gesture by locating the arm. In: IEEE International Conference on Robotics and Biomimetics (2011). ISBN 9781457721380 Bo, N.B., van Hese, P., van Cauwelaert, D., Veelaert, P., Philips, W.: Detection of a hand-raising gesture by locating the arm. In: IEEE International Conference on Robotics and Biomimetics (2011). ISBN 9781457721380
Metadaten
Titel
Automated Hand-Raising Detection in Classroom Videos: A View-Invariant and Occlusion-Robust Machine Learning Approach
verfasst von
Babette Bühler
Ruikun Hou
Efe Bozkir
Patricia Goldberg
Peter Gerjets
Ulrich Trautwein
Enkelejda Kasneci
Copyright-Jahr
2023
DOI
https://doi.org/10.1007/978-3-031-36272-9_9