Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

14.02.2017 | Original Article | Ausgabe 9/2017

International Journal of Computer Assisted Radiology and Surgery 9/2017

Automated identification and reduction of artifacts in cine four-dimensional computed tomography (4DCT) images using respiratory motion model

Zeitschrift:
International Journal of Computer Assisted Radiology and Surgery > Ausgabe 9/2017
Autoren:
Min Li, Sarah Joy Castillo, Richard Castillo, Edward Castillo, Thomas Guerrero, Liang Xiao, Xiaolin Zheng

Abstract

Purpose

Four-dimensional computed tomography (4DCT) images are often marred by artifacts that substantially degrade image quality and confound image interpretation. Human observation remains the standard method of 4DCT artifact evaluation, which is time-consuming and subjective. We develop a method to automatically identify and reduce artifacts in cine 4DCT images.

Methods

We proposed an algorithm that consisted of two main stages: deformable image registration and respiratory motion simulation. Specifically, each 4DCT phase image was registered to the breath-holding CT image using the block-matching method, with erroneous spatial matches removed by the least median of squares filter and the full displacement vector field generated by the moving least squares interpolation. The lung’s respiratory motion trajectory was then recovered from the displacement vector field using the parameterized polynomial function, with fitting parameters estimated by combinatorial optimization. In this way, artifacts were located according to deviations between image points and their motion trajectories and further corrected based on position prediction.

Results

The mean spatial error (standard deviation) was 1.00 (0.85) mm after registration as opposed to 6.96 (4.61) mm before registration. In addition, we took human observation conducted by medical experts as the gold standard. The average sensitivity, specificity, and accuracy of the proposed method in artifact identification were 0.97, 0.84, and 0.89, respectively.

Conclusions

The proposed method identified and reduced artifacts accurately and automatically, providing an alternative way to analyze 4DCT image quality and to correct problematic images for radiation therapy.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 9/2017

International Journal of Computer Assisted Radiology and Surgery 9/2017 Zur Ausgabe

Premium Partner

    Bildnachweise