2014 | OriginalPaper | Buchkapitel
Automatic Burn Depth Estimation from Psychophysical Experiment Data
verfasst von : Begoña Acha, Tomás Gómez-Cía, Irene Fondón, Carmen Serrano
Erschienen in: XIII Mediterranean Conference on Medical and Biological Engineering and Computing 2013
Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.
Wählen Sie Textabschnitte aus um mit Künstlicher Intelligenz passenden Patente zu finden. powered by
Markieren Sie Textabschnitte, um KI-gestützt weitere passende Inhalte zu finden. powered by (Link öffnet in neuem Fenster)
In this paper a psychophysical experiment and a Multidimensional Scaling (MDS) analysis are undergone to determine the physical characteristics that physicians employ to diagnose a burn depth. Subsequently, these characteristics are translated into mathematical features, correlated with these physical characteristics analysis. Finally, they are introduced to a Support Vector Machine (SVM) classifier. Results validate the ability of the mathematical features extracted from the psychophysical experiment to classify burns into their depths.