Skip to main content
Erschienen in:

21.05.2024 | Original Article

Automatic decomposition of protrusion volumes on thin-shell models for hexahedral mesh generation

verfasst von: Pradiktio Putrayudanto, Jiing-Yih Lai, Pei-Pu Song, Yao-Chen Tsai, Chia-Hsiang Hsu

Erschienen in: Engineering with Computers | Ausgabe 6/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Hexahedral mesh generation of thin-shell models is frequently constrained by volume decomposition, which is tedious and time-consuming. The complex geometries of a thin-shell model make volume decomposition more challenging. Creating a hexahedral mesh can be simplified by splitting the thin-shell volume into two types of subvolumes, namely the main-shell and protrusions body. A set of shared surfaces between subvolumes of main-shell and protrusion feature in the decomposition process, called cap faces herein, are formed by considering the natural boundary face of each subvolume. A novel protrusion feature graph is proposed to facilitate cap face generation on the bottom area that forms an interconnected protrusion structure, and to assist in optimizing the number of cap faces. The split and merge strategy are employed to generate individual solid subvolumes for main-shell and protrusion. This automatic approach is implemented in a CAD platform, and the decomposed model is tested on a mesh generator. The decomposition results of several thin-shell models, along with the CPU time required, are presented to validate the feasibility of the proposed algorithm.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Nixon J, Menary GH, Yan S (2017) Finite element simulations of stretch-blow moulding with experimental validation over a broad process window. Int J Mater Form 10:793–809CrossRef Nixon J, Menary GH, Yan S (2017) Finite element simulations of stretch-blow moulding with experimental validation over a broad process window. Int J Mater Form 10:793–809CrossRef
2.
Zurück zum Zitat Schneider T, Hu Y, Gao X, Dumas J, Zorin D, Panozzo D (2022) A large-scale comparison of tetrahedral and hexahedral elements for solving elliptic PDEs with the finite element method. ACM Trans Graph 41(3):14CrossRef Schneider T, Hu Y, Gao X, Dumas J, Zorin D, Panozzo D (2022) A large-scale comparison of tetrahedral and hexahedral elements for solving elliptic PDEs with the finite element method. ACM Trans Graph 41(3):14CrossRef
3.
Zurück zum Zitat Biswas R, Strawn RC (1998) Tetrahedral and hexahedral mesh adaptation for CFD problems. Appl Numer Math 26:135–151MathSciNetCrossRef Biswas R, Strawn RC (1998) Tetrahedral and hexahedral mesh adaptation for CFD problems. Appl Numer Math 26:135–151MathSciNetCrossRef
4.
Zurück zum Zitat Yu Y, Wei X, Li A, Liu JG, He J, Zhang YJ (2022) HexGen and Hex2Spline: polycube-based hexahedral mesh generation and spline modeling for isogeometric analysis applications in LS-DYNA. In: Springer INdAM Series: Proceedings of INdAM Workshop "Geometric Challenges in Isogeometric Analysis” Yu Y, Wei X, Li A, Liu JG, He J, Zhang YJ (2022) HexGen and Hex2Spline: polycube-based hexahedral mesh generation and spline modeling for isogeometric analysis applications in LS-DYNA. In: Springer INdAM Series: Proceedings of INdAM Workshop "Geometric Challenges in Isogeometric Analysis”
5.
Zurück zum Zitat Yu Y, Liu JG, Zhang YJ (2021) HexDom: polycube-based hexahedral dominant mesh generation. In: The Edited Volume of Mesh Generation and Adaptation: Cutting-Edge Techniques for the 60th Birthday of Oubay Hassan, SEMA-SIMAI Springer Series Yu Y, Liu JG, Zhang YJ (2021) HexDom: polycube-based hexahedral dominant mesh generation. In: The Edited Volume of Mesh Generation and Adaptation: Cutting-Edge Techniques for the 60th Birthday of Oubay Hassan, SEMA-SIMAI Springer Series
6.
Zurück zum Zitat Tong H, Qian K, Halilaj E, Zhang YJ (2023) SRL-assisted AFM: generating planar unstructured quadrilateral meshes with supervised and reinforcement learning-assisted advancing front method. J Comput Sci 72:102109CrossRef Tong H, Qian K, Halilaj E, Zhang YJ (2023) SRL-assisted AFM: generating planar unstructured quadrilateral meshes with supervised and reinforcement learning-assisted advancing front method. J Comput Sci 72:102109CrossRef
7.
Zurück zum Zitat Lu Y, Gadh R, Tautges TJ (2001) Feature based hex meshing methodology: feature recognition and volume decomposition. Comput Aided Des 33(3):221–232CrossRef Lu Y, Gadh R, Tautges TJ (2001) Feature based hex meshing methodology: feature recognition and volume decomposition. Comput Aided Des 33(3):221–232CrossRef
8.
Zurück zum Zitat Lu JHC, Song I, Quadros WR, Shimada K (2014) Geometric reasoning in sketch-based volumetric decomposition framework for hexahedral meshing. Eng Comput 30:237–252CrossRef Lu JHC, Song I, Quadros WR, Shimada K (2014) Geometric reasoning in sketch-based volumetric decomposition framework for hexahedral meshing. Eng Comput 30:237–252CrossRef
9.
Zurück zum Zitat Sun L, Tierney CM, Armstrong CG, Robinson TT (2016) Automatic decomposition of complex thin-walled CAD models for hexahedral dominant meshing. Procedia Eng 163:225–237CrossRef Sun L, Tierney CM, Armstrong CG, Robinson TT (2016) Automatic decomposition of complex thin-walled CAD models for hexahedral dominant meshing. Procedia Eng 163:225–237CrossRef
10.
Zurück zum Zitat White DR, Mingwu L, Benzley SE, Sjaardema GD (1995) Automated hexahedral mesh generation by virtual decomposition. In: 4th International Meshing Roundtable White DR, Mingwu L, Benzley SE, Sjaardema GD (1995) Automated hexahedral mesh generation by virtual decomposition. In: 4th International Meshing Roundtable
11.
Zurück zum Zitat Su Y, Lee KH, Kumar AS (2005) Automatic hexahedral mesh generation using a new grid-based method with geometry and mesh transformation. Comput Methods Appl Mech Eng 194(39–41):4071–4096CrossRef Su Y, Lee KH, Kumar AS (2005) Automatic hexahedral mesh generation using a new grid-based method with geometry and mesh transformation. Comput Methods Appl Mech Eng 194(39–41):4071–4096CrossRef
12.
Zurück zum Zitat Wu H, Gao S, Wang R, Ding M (2017) A global approach to multi-axis swept mesh generation. Procedia Eng 203:414–426CrossRef Wu H, Gao S, Wang R, Ding M (2017) A global approach to multi-axis swept mesh generation. Procedia Eng 203:414–426CrossRef
13.
Zurück zum Zitat White DR, Saigal S, Owen SJ (2004) CCSweep: automatic decomposition of multi-sweep volumes. Eng Comput 20(3):222–236CrossRef White DR, Saigal S, Owen SJ (2004) CCSweep: automatic decomposition of multi-sweep volumes. Eng Comput 20(3):222–236CrossRef
14.
Zurück zum Zitat Putrayudanto P, Hwang YZ, Lai JY, Tsai YC, Hsu CH (2023) An enhanced approach for inner and outer faces recognition of complex thin-shell parts. Eng Comput 11(38):4895–4917 Putrayudanto P, Hwang YZ, Lai JY, Tsai YC, Hsu CH (2023) An enhanced approach for inner and outer faces recognition of complex thin-shell parts. Eng Comput 11(38):4895–4917
15.
Zurück zum Zitat Kwon S, Mun D, Kim BC, Han S, Suh H (2019) B-rep model simplification using selective and iterative volume decomposition to obtain finer multi-resolution models. Comput Aided Des 112:23–34CrossRef Kwon S, Mun D, Kim BC, Han S, Suh H (2019) B-rep model simplification using selective and iterative volume decomposition to obtain finer multi-resolution models. Comput Aided Des 112:23–34CrossRef
16.
Zurück zum Zitat Waco DL, Kim YS (1994) Geometric reasoning for machining features using convex decomposition. Comput Aided Des 26(6):477–489CrossRef Waco DL, Kim YS (1994) Geometric reasoning for machining features using convex decomposition. Comput Aided Des 26(6):477–489CrossRef
17.
Zurück zum Zitat Sakurai H, Dave P (1996) Volume decomposition and feature recognition, Part II: curved objects. Comput Aided Des 28(6–7):519–537CrossRef Sakurai H, Dave P (1996) Volume decomposition and feature recognition, Part II: curved objects. Comput Aided Des 28(6–7):519–537CrossRef
18.
Zurück zum Zitat Woo Y, Kim SH (2014) Protrusion recognition from solid model using orthogonal bounding factor. J Mech Sci Technol 28(5):1759–1764CrossRef Woo Y, Kim SH (2014) Protrusion recognition from solid model using orthogonal bounding factor. J Mech Sci Technol 28(5):1759–1764CrossRef
19.
Zurück zum Zitat Price MA, Armstrong CG, Sabin MA (1995) Hexahedral mesh generation by medial surface subdivision: Part I. solids with convex edges. Int J Numer Meth Engng 38(19):3335–3359CrossRef Price MA, Armstrong CG, Sabin MA (1995) Hexahedral mesh generation by medial surface subdivision: Part I. solids with convex edges. Int J Numer Meth Engng 38(19):3335–3359CrossRef
20.
Zurück zum Zitat Liu SS, Gadh R (1998) Basic logical bulk shapes (BLOBs) for finite element hexahedral mesh generation to support virtual prototyping. J Manuf Sci Eng 120(4):728–735CrossRef Liu SS, Gadh R (1998) Basic logical bulk shapes (BLOBs) for finite element hexahedral mesh generation to support virtual prototyping. J Manuf Sci Eng 120(4):728–735CrossRef
21.
Zurück zum Zitat Liu, SS, Gadh R (1997) Automatic hexahedral mesh generation by recursive convex and swept volume decomposition. In: 6th International Meshing Roundtable Liu, SS, Gadh R (1997) Automatic hexahedral mesh generation by recursive convex and swept volume decomposition. In: 6th International Meshing Roundtable
22.
Zurück zum Zitat Lai M, Benzley S, White D (2000) Automated hexahedral mesh generation by generalized multiple source to multiple target sweeping. Int J Numer Meth Engng 49:261–275CrossRef Lai M, Benzley S, White D (2000) Automated hexahedral mesh generation by generalized multiple source to multiple target sweeping. Int J Numer Meth Engng 49:261–275CrossRef
23.
Zurück zum Zitat Miyoshi K, Blacker TD (2000) Hexahedral mesh generation using multi-axis cooper algorithm. In: 9th International Meshing Roundtable Miyoshi K, Blacker TD (2000) Hexahedral mesh generation using multi-axis cooper algorithm. In: 9th International Meshing Roundtable
24.
Zurück zum Zitat Scott MA, Benzley SE, Owen SJ (2006) Improved many-to-one sweeping. Int J Numer Meth Engng 65:332–349CrossRef Scott MA, Benzley SE, Owen SJ (2006) Improved many-to-one sweeping. Int J Numer Meth Engng 65:332–349CrossRef
25.
Zurück zum Zitat Chan CK, Tan ST (2005) Volume decomposition of CAD models for rapid prototyping technology. Rapid Prototyp J 11(4):221–234CrossRef Chan CK, Tan ST (2005) Volume decomposition of CAD models for rapid prototyping technology. Rapid Prototyp J 11(4):221–234CrossRef
26.
Zurück zum Zitat Wu H, Gao S, Wang R, Chen J (2018) Fuzzy clustering based pseudo-swept volume decomposition for hexahedral meshing. Comput Aided Des 96:42–58CrossRef Wu H, Gao S, Wang R, Chen J (2018) Fuzzy clustering based pseudo-swept volume decomposition for hexahedral meshing. Comput Aided Des 96:42–58CrossRef
27.
Zurück zum Zitat Pietroni N, Campen M, Sheffer A, Cherchi G, Bommes D, Gao X, Scateni R, Ledoux F, Remacle J, Livesu M (2022) Hex-mesh generation and processing: a survey. ACM Trans Graph 42(2):1–44CrossRef Pietroni N, Campen M, Sheffer A, Cherchi G, Bommes D, Gao X, Scateni R, Ledoux F, Remacle J, Livesu M (2022) Hex-mesh generation and processing: a survey. ACM Trans Graph 42(2):1–44CrossRef
28.
Zurück zum Zitat Sheerbroke EC, Patrikalakis NM, Brisson E (1996) An algorithm for the medial axis transform of 3D polyhedral solids. IEEE Trans Vis Comput Graph 2(1):44–61CrossRef Sheerbroke EC, Patrikalakis NM, Brisson E (1996) An algorithm for the medial axis transform of 3D polyhedral solids. IEEE Trans Vis Comput Graph 2(1):44–61CrossRef
29.
Zurück zum Zitat Ramanathan M, Gurumoorthy B (2010) Interior medial axis transform computation of 3D objects bound by free-form surfaces. Comput Aided Des 42(12):1217–1231CrossRef Ramanathan M, Gurumoorthy B (2010) Interior medial axis transform computation of 3D objects bound by free-form surfaces. Comput Aided Des 42(12):1217–1231CrossRef
30.
Zurück zum Zitat Zhang Y, Bazilevs Y, Goswami S, Bajaj CL, Hughes TJR (2007) Patient-specific vascular NURBS modeling for isogeometric analysis of blood flow. Comput Methods Appl Mech Eng 196(29–30):2943–2959MathSciNetCrossRef Zhang Y, Bazilevs Y, Goswami S, Bajaj CL, Hughes TJR (2007) Patient-specific vascular NURBS modeling for isogeometric analysis of blood flow. Comput Methods Appl Mech Eng 196(29–30):2943–2959MathSciNetCrossRef
31.
Zurück zum Zitat Urick B, Sanders TM, Hossain SS, Zhang YJ, Hughes TJR (2019) Review of patient-specific vascular modeling: template-based isogeometric framework and the case for CAD. Arch Comput Methods Eng 26:381–404CrossRef Urick B, Sanders TM, Hossain SS, Zhang YJ, Hughes TJR (2019) Review of patient-specific vascular modeling: template-based isogeometric framework and the case for CAD. Arch Comput Methods Eng 26:381–404CrossRef
32.
Zurück zum Zitat Tam TKH, Armstrong CG (1991) 2D finite element mesh generation by medial axis subdivision. Adv Eng Softw 13(5–6):313–324 Tam TKH, Armstrong CG (1991) 2D finite element mesh generation by medial axis subdivision. Adv Eng Softw 13(5–6):313–324
33.
Zurück zum Zitat Donaghy R, Armstrong C, Price M (2000) Dimensional reduction of surface models for analysis. Eng Comput 16:24–35CrossRef Donaghy R, Armstrong C, Price M (2000) Dimensional reduction of surface models for analysis. Eng Comput 16:24–35CrossRef
34.
Zurück zum Zitat Woo Y (2014) Abstraction of mid-surfaces from solid models of thin-walled parts: a divide-and-conquer approach. Comput Aided Des 47:1–11CrossRef Woo Y (2014) Abstraction of mid-surfaces from solid models of thin-walled parts: a divide-and-conquer approach. Comput Aided Des 47:1–11CrossRef
35.
Zurück zum Zitat Zhu H, Shao Y, Liu Y, Zhao J (2016) Automatic hierarchical mid-surface abstraction of thin-walled model based on rib decomposition. Adv Eng Softw 97:60–71CrossRef Zhu H, Shao Y, Liu Y, Zhao J (2016) Automatic hierarchical mid-surface abstraction of thin-walled model based on rib decomposition. Adv Eng Softw 97:60–71CrossRef
36.
Zurück zum Zitat Lai JY, Wang MH, You ZW, Chiu YK, Hsu CH, Tsai YC, Huang CY (2016) Recognition of virtual loops on 3D CAD models based on the B-rep model. Eng Comput 32:593–606CrossRef Lai JY, Wang MH, You ZW, Chiu YK, Hsu CH, Tsai YC, Huang CY (2016) Recognition of virtual loops on 3D CAD models based on the B-rep model. Eng Comput 32:593–606CrossRef
37.
Zurück zum Zitat Lai JY, Song PP, Hsiao AS, Tsai YC, Hsu CH (2021) Recognition and classification of protrusion features on thin-wall parts for mold flow analysis. Eng Comput 37:833–854CrossRef Lai JY, Song PP, Hsiao AS, Tsai YC, Hsu CH (2021) Recognition and classification of protrusion features on thin-wall parts for mold flow analysis. Eng Comput 37:833–854CrossRef
38.
Zurück zum Zitat Lai JY, Wong C, Huynh TT, Wang MH, Hsu CH, Tsai YC, Huang CY (2016) Small blend suppression from B-rep models in computer-aided engineering analysis. J Chin Inst Eng 39(6):735–745CrossRef Lai JY, Wong C, Huynh TT, Wang MH, Hsu CH, Tsai YC, Huang CY (2016) Small blend suppression from B-rep models in computer-aided engineering analysis. J Chin Inst Eng 39(6):735–745CrossRef
39.
Zurück zum Zitat Lai JY, Song PP, Hsu CH, Tsai YC (2020) Recognition and simplification of holes in CAD models of an injection mold for mold flow analysis. Comput Aided Des Appl 17(1):88–107CrossRef Lai JY, Song PP, Hsu CH, Tsai YC (2020) Recognition and simplification of holes in CAD models of an injection mold for mold flow analysis. Comput Aided Des Appl 17(1):88–107CrossRef
40.
Zurück zum Zitat Song PP, Putrayudanto P, Wu TY, Lai JY, Tsai YC, Wang MH, Hsu CH (2023) Decomposition of protrusion features on thin-shell parts for mold flow analysis. Eng Comput 39:2757–2789CrossRef Song PP, Putrayudanto P, Wu TY, Lai JY, Tsai YC, Wang MH, Hsu CH (2023) Decomposition of protrusion features on thin-shell parts for mold flow analysis. Eng Comput 39:2757–2789CrossRef
41.
42.
Zurück zum Zitat Stimpson CJ, Ernst CD, Knupp P, Pebay P, Thompson D (2007) The verdict geometric quality library. In: Sandia Report SAND2007–175 Stimpson CJ, Ernst CD, Knupp P, Pebay P, Thompson D (2007) The verdict geometric quality library. In: Sandia Report SAND2007–175
Metadaten
Titel
Automatic decomposition of protrusion volumes on thin-shell models for hexahedral mesh generation
verfasst von
Pradiktio Putrayudanto
Jiing-Yih Lai
Pei-Pu Song
Yao-Chen Tsai
Chia-Hsiang Hsu
Publikationsdatum
21.05.2024
Verlag
Springer London
Erschienen in
Engineering with Computers / Ausgabe 6/2024
Print ISSN: 0177-0667
Elektronische ISSN: 1435-5663
DOI
https://doi.org/10.1007/s00366-024-01999-9