Skip to main content

2024 | OriginalPaper | Buchkapitel

Automatic Detection and Classification System for Mesothelioma Cancer Using Deep Learning Models with HPO

verfasst von : Apeksha Koul, Rajesh K. Bawa, Yogesh Kumar

Erschienen in: Advances in Data-Driven Computing and Intelligent Systems

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Mesothelioma is a deadly cancer, but its early detection is important to save the life of a human. Hence, the paper focuses on the development of a novel method to detect Mesothelioma cancer using deep learning techniques like Gated Recurrent Unit, Multilayer Perceptron, and Long Short-Term Memory along with GridSearchCV(a hyper-parameter optimization technique). To evaluate the method, an experiment has been conducted on the dataset of 324 records, where 228 represent healthy individuals and 96 depict Mesothelioma patients. After analyzing and studying its pattern, feature selection technique such as Standard Scaler is applied to remove extraneous attributes. Besides this, SMOTE technique has been also used to address class imbalance and balance the binary classes in the data. During model training, all the applied models have been trained as well as examined for the parameters like precision, accuracy, loss, F1-score, recall, and AUC-ROC. In addition to this, for enhancing the performance of MLP model,  GridSearchCV has been incorporated to fine-tune the hyper-parameters. During experimentation, the results show that the MLP model incorporated with GridSearchCV optimizer achieves the highest testing accuracy of 98.97%, precision and AUC-ROC of 1.00, while as F1-score and recall of 0.98. These findings indicate that our proposed approach obtained through  GridSearchCV demonstrates improved performance and serves as a reliable tool for early Mesothelioma detection.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Kumar Y (2020) Recent advancement of machine learning and deep learning in the field of healthcare system. Comput Intell Mach Learn Healthc Inform 1:77–98 Kumar Y (2020) Recent advancement of machine learning and deep learning in the field of healthcare system. Comput Intell Mach Learn Healthc Inform 1:77–98
2.
Zurück zum Zitat Saxena K et al (2022) Appropriate supervised machine learning techniques for mesothelioma detection and cure. Biomed Res Int 2022:1–11 Saxena K et al (2022) Appropriate supervised machine learning techniques for mesothelioma detection and cure. Biomed Res Int 2022:1–11
4.
Zurück zum Zitat Gupta S, Gupta MK, Shabaz M, Sharma A (2022) Deep learning techniques for cancer classification using microarray gene expression data. Front Physiol 13:1–14CrossRef Gupta S, Gupta MK, Shabaz M, Sharma A (2022) Deep learning techniques for cancer classification using microarray gene expression data. Front Physiol 13:1–14CrossRef
5.
Zurück zum Zitat Hu X, Yu Z (2018) Diagnosis of mesothelioma with deep learning. Oncol Lett 17:1483–1490 Hu X, Yu Z (2018) Diagnosis of mesothelioma with deep learning. Oncol Lett 17:1483–1490
6.
Zurück zum Zitat Courtiol P et al (2019) Deep learning-based classification of Mesothelioma improves prediction of patient outcome. Nat Med 25:1519–1525CrossRef Courtiol P et al (2019) Deep learning-based classification of Mesothelioma improves prediction of patient outcome. Nat Med 25:1519–1525CrossRef
7.
Zurück zum Zitat Gupta S, Gupta MK (2023) Computational model for prediction of malignant Mesothelioma diagnosis. Comput J 66(1):86–100CrossRef Gupta S, Gupta MK (2023) Computational model for prediction of malignant Mesothelioma diagnosis. Comput J 66(1):86–100CrossRef
8.
Zurück zum Zitat Alam TM et al (2021) A machine learning approach for identification of malignant mesothelioma etiological factors in an imbalanced dataset. Comput J 65:1740–1751CrossRef Alam TM et al (2021) A machine learning approach for identification of malignant mesothelioma etiological factors in an imbalanced dataset. Comput J 65:1740–1751CrossRef
9.
Zurück zum Zitat Zadsafar F et al (2022) A model for Mesothelioma cancer diagnosis based on feature selection using Harris hawk optimization algorithm. Comput Methods Program Biomed Update 2:1–7CrossRef Zadsafar F et al (2022) A model for Mesothelioma cancer diagnosis based on feature selection using Harris hawk optimization algorithm. Comput Methods Program Biomed Update 2:1–7CrossRef
10.
Zurück zum Zitat Mukherjee S (2018) Malignant mesothelioma disease diagnosis using data mining techniques. Appl Artif Intell 32:293–308CrossRef Mukherjee S (2018) Malignant mesothelioma disease diagnosis using data mining techniques. Appl Artif Intell 32:293–308CrossRef
11.
Zurück zum Zitat Kumar Y et al (2021) Heart failure detection using quantum-enhanced machine learning and traditional machine learning techniques for internet of artificially intelligent medical things. Wirel Commun Mob Comput 2021:1–16 Kumar Y et al (2021) Heart failure detection using quantum-enhanced machine learning and traditional machine learning techniques for internet of artificially intelligent medical things. Wirel Commun Mob Comput 2021:1–16
12.
Zurück zum Zitat Sinha A, Kayaalp F (2021) Classification performance evaluation on diagnosis of breast cancer. Springer eBooks 76:237–245 Sinha A, Kayaalp F (2021) Classification performance evaluation on diagnosis of breast cancer. Springer eBooks 76:237–245
13.
Zurück zum Zitat Di Genova A et al (2022) A molecular phenotypic map of malignant pleural Mesothelioma. GigaScience 12:1–13 Di Genova A et al (2022) A molecular phenotypic map of malignant pleural Mesothelioma. GigaScience 12:1–13
14.
Zurück zum Zitat Koul A, Bawa RK, Kumar Y (2022) Artificial intelligence techniques to predict the airway disorders illness: a systematic review. Arch Comput Method Eng 30:831–864CrossRef Koul A, Bawa RK, Kumar Y (2022) Artificial intelligence techniques to predict the airway disorders illness: a systematic review. Arch Comput Method Eng 30:831–864CrossRef
Metadaten
Titel
Automatic Detection and Classification System for Mesothelioma Cancer Using Deep Learning Models with HPO
verfasst von
Apeksha Koul
Rajesh K. Bawa
Yogesh Kumar
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-9521-9_12