Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

18.10.2016 | New Trends in data pre-processing methods for signal and image classification | Ausgabe 10/2017

Neural Computing and Applications 10/2017

Automatic detection of respiratory arrests in OSA patients using PPG and machine learning techniques

Zeitschrift:
Neural Computing and Applications > Ausgabe 10/2017
Autoren:
Muhammed Kürşad Uçar, Mehmet Recep Bozkurt, Cahit Bilgin, Kemal Polat

Abstract

Obstructive sleep apnea is a syndrome which is characterized by the decrease in air flow or respiratory arrest depending on upper respiratory tract obstructions recurring during sleep and often observed with the decrease in the oxygen saturation. The aim of this study was to determine the connection between the respiratory arrests and the photoplethysmography (PPG) signal in obstructive sleep apnea patients. Determination of this connection is important for the suggestion of using a new signal in diagnosis of the disease. Thirty-four time-domain features were extracted from the PPG signal in the study. The relation between these features and respiratory arrests was statistically investigated. The Mann–Whitney U test was applied to reveal whether this relation was incidental or statistically significant, and 32 out of 34 features were found statistically significant. After this stage, the features of the PPG signal were classified with k-nearest neighbors classification algorithm, radial basis function neural network, probabilistic neural network, multilayer feedforward neural network (MLFFNN) and ensemble classification method. The output of the classifiers was considered as apnea and control (normal). When the classifier results were compared, the best performance was obtained with MLFFNN. Test accuracy rate is 97.07 % and kappa value is 0.93 for MLFFNN. It has been concluded with the results obtained that respiratory arrests can be recognized through the PPG signal and the PPG signal can be used for the diagnosis of OSA.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 10/2017

Neural Computing and Applications 10/2017 Zur Ausgabe

New Trends in data pre-processing methods for signal and image classification

Hermite-based texture feature extraction for classification of humeral head in proton density-weighted MR images

New Trends in data pre-processing methods for signal and image classification

A new approach to eliminating EOG artifacts from the sleep EEG signals for the automatic sleep stage classification

New Trends in data pre-processing methods for signal and image classification

ANN-based MPPT algorithm for solar PMSM drive system fed by direct-connected PV array

New Trends in data pre-processing methods for signal and image classification

Unsupervised feature selection based on decision graph

Premium Partner

    Bildnachweise