Skip to main content

Tipp

Weitere Kapitel dieses Buchs durch Wischen aufrufen

2021 | OriginalPaper | Buchkapitel

Automatic-differentiated Physics-Informed Echo State Network (API-ESN)

verfasst von : Alberto Racca, Luca Magri

Erschienen in: Computational Science – ICCS 2021

Verlag: Springer International Publishing

share
TEILEN

Abstract

We propose the Automatic-differentiated Physics-Informed Echo State Network (API-ESN). The network is constrained by the physical equations through the reservoir’s exact time-derivative, which is computed by automatic differentiation. As compared to the original Physics-Informed Echo State Network, the accuracy of the time-derivative is increased by up to seven orders of magnitude. This increased accuracy is key in chaotic dynamical systems, where errors grow exponentially in time. The network is showcased in the reconstruction of unmeasured (hidden) states of a chaotic system. The API-ESN eliminates a source of error, which is present in existing physics-informed echo state networks, in the computation of the time-derivative. This opens up new possibilities for an accurate reconstruction of chaotic dynamical states.
Literatur
5.
Zurück zum Zitat Jaeger, H., Haas, H.: Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication. Science 304(5667), 78–80 (2004) CrossRef Jaeger, H., Haas, H.: Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication. Science 304(5667), 78–80 (2004) CrossRef
6.
Zurück zum Zitat Kingma, D.P., Ba, J.: Adam: a method for stochastic gradient descent. In: ICLR: International Conference on Learning Representations, pp. 1–15 (2015) Kingma, D.P., Ba, J.: Adam: a method for stochastic gradient descent. In: ICLR: International Conference on Learning Representations, pp. 1–15 (2015)
8.
Zurück zum Zitat Lu, Z., Pathak, J., Hunt, B., Girvan, M., Brockett, R., Ott, E.: Reservoir observers: model-free inference of unmeasured variables in chaotic systems. Chaos Interdisc. J. Nonlinear Sci. 27(4), 041102 (2017) Lu, Z., Pathak, J., Hunt, B., Girvan, M., Brockett, R., Ott, E.: Reservoir observers: model-free inference of unmeasured variables in chaotic systems. Chaos Interdisc. J. Nonlinear Sci. 27(4), 041102 (2017)
10.
Zurück zum Zitat Raissi, M., Yazdani, A., Karniadakis, G.E.: Hidden fluid mechanics: learning velocity and pressure fields from flow visualizations. Science 367(6481), 1026–1030 (2020) CrossRef Raissi, M., Yazdani, A., Karniadakis, G.E.: Hidden fluid mechanics: learning velocity and pressure fields from flow visualizations. Science 367(6481), 1026–1030 (2020) CrossRef
Metadaten
Titel
Automatic-differentiated Physics-Informed Echo State Network (API-ESN)
verfasst von
Alberto Racca
Luca Magri
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-77977-1_25