Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

02.05.2020 | Original Article | Ausgabe 10/2020

International Journal of Machine Learning and Cybernetics 10/2020

Automatic extraction of named entities of cyber threats using a deep Bi-LSTM-CRF network

Zeitschrift:
International Journal of Machine Learning and Cybernetics > Ausgabe 10/2020
Autoren:
Gyeongmin Kim, Chanhee Lee, Jaechoon Jo, Heuiseok Lim
Wichtige Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Countless cyber threat intelligence (CTI) reports are used by companies around the world on a daily basis for security reasons. To secure critical cybersecurity information, analysts and individuals should accordingly analyze information on threats and vulnerabilities. However, analyzing such overwhelming volumes of reports requires considerable time and effort. In this study, we propose a novel approach that automatically extracts core information from CTI reports using a named entity recognition (NER) system. During the process of constructing our proposed NER system, we defined meaningful keywords in the security domain as entities, including malware, domain/URL, IP address, Hash, and Common Vulnerabilities and Exposures. Furthermore, we linked these keywords with the words extracted from the text data of the report. To achieve a higher performance, we utilized the character-level feature vector as an input to bidirectional long-short-term memory using a conditional random field network. We finally achieved an average F1-score of 75.05%. We release 498,000 tag datasets created during our research.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 10/2020

International Journal of Machine Learning and Cybernetics 10/2020 Zur Ausgabe