Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

01.07.2014 | Methodologies and Application | Ausgabe 7/2014

Soft Computing 7/2014

Automatic generation of multiple choice questions using dependency-based semantic relations

Zeitschrift:
Soft Computing > Ausgabe 7/2014
Autoren:
Naveed Afzal, Ruslan Mitkov
Wichtige Hinweise
Communicated by V. Loia.

Abstract

In this paper, we present an unsupervised dependency-based approach to extract semantic relations to be applied in the context of automatic generation of multiple choice questions (MCQs). MCQs also known as multiple choice tests provide a popular solution for large-scale assessments as they make it much easier for test-takers to take tests and for examiners to interpret their results. Manual generation of MCQs is a very expensive and time-consuming task and yet they often need to be produced on a large scale and within short iterative cycles. We approach the problem of automated MCQ generation with the help of unsupervised relation extraction, a technique used in a number of related natural language processing problems. The goal of Unsupervised relation extraction is to identify the most important named entities and terminology in a document and then recognise semantic relations between them, without any prior knowledge as to the semantic types of the relations or their specific linguistic realisation. We use these techniques to process instructional texts and identify those facts (terminology, entities, and semantic relations between them) that are likely to be important for assessing test-takers’ familiarity with the instructional material. We investigate an approach to learn semantic relations between named entities by employing a dependency tree model. Our findings show that an optimised configuration of our MCQ generation system is capable of attaining high precision rates, which are much more important than recall in the automatic generation of MCQs. We also carried out a user-centric evaluation of the system, where subject domain experts evaluated automatically generated MCQ items in terms of readability, usefulness of semantic relations, relevance, acceptability of questions and distractors and overall MCQ usability. The results of this evaluation make it possible for us to draw conclusions about the utility of the approach in practical e-Learning applications.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe​​​​​​​




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 7/2014

Soft Computing 7/2014 Zur Ausgabe

Methodologies and Application

Improved RM-MEDA with local learning

Premium Partner

    Bildnachweise