Skip to main content
Erschienen in: Microsystem Technologies 5/2020

10.12.2019 | Technical Paper

Automatic pick-and-place using a magnetically navigated microrobot and a motorized micromanipulator

verfasst von: Xiaodong Zhang, Mir Behrad Khamesee

Erschienen in: Microsystem Technologies | Ausgabe 5/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper demonstrates the automatic pick-and-place of a small object in 2D using a magnetically navigated microrobot (MNM) and a motorized micromanipulator (MM). A master/slave control mechanism is used in the manipulation process. The MM is the master manipulator. The MNM is the slave manipulator. To avoid damaging the object by large holding force and to maintain successful holding, a position-based impedance control algorithm is implemented to the slave side. The feedback force to the impedance controller is obtained from an off-board force determination mechanism which overcomes the disadvantages of installing an on-board force sensor on the MNM. The performance of the proposed manipulation system was examined experimentally by transporting a hard-shell object to its desired destinations with predefined holding force. To the authors knowledge, this is the first work reported using a magnetically navigated microrobot to complete manipulation tasks with a screw type manipulator. The proposed system has potential utility in microinjection if the MNM was scaled down to proper size.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Al Mashagbeh M, Khamesee M (2015) Virtual performance evaluation of an industrial SCARA robot prior to real-world task. Microsyst Technol 21(12):2605–2609CrossRef Al Mashagbeh M, Khamesee M (2015) Virtual performance evaluation of an industrial SCARA robot prior to real-world task. Microsyst Technol 21(12):2605–2609CrossRef
Zurück zum Zitat Al Mashagbeh M, Al-Dulaimi T, Khamesee M (2017) Design and optimization of a novel magnetically-actuated micromanipulator. Microsyst Technol 23(8):3589–3600CrossRef Al Mashagbeh M, Al-Dulaimi T, Khamesee M (2017) Design and optimization of a novel magnetically-actuated micromanipulator. Microsyst Technol 23(8):3589–3600CrossRef
Zurück zum Zitat Bonitz R, Hsia T (1994) Force decomposition in cooperating manipulators using the theory of metric spaces and generalized inverses. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp 1521–1527 Bonitz R, Hsia T (1994) Force decomposition in cooperating manipulators using the theory of metric spaces and generalized inverses. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp 1521–1527
Zurück zum Zitat Bonitz R, Hsia T (1996) Internal Force-Based Impedance control for cooperating manipulators. IEEE Trans Robot Autom 12(1):78–89CrossRef Bonitz R, Hsia T (1996) Internal Force-Based Impedance control for cooperating manipulators. IEEE Trans Robot Autom 12(1):78–89CrossRef
Zurück zum Zitat Cappelleri D, Fu Z (2012) Cooperative micromanipulators for 3D micromanipulation and assembly. In: Proceedings of the ASME 2012 international design engineering technical conference & computers and information in engineering conference, Chicago, IL, USA, Aug 12–15, pp 177–185 Cappelleri D, Fu Z (2012) Cooperative micromanipulators for 3D micromanipulation and assembly. In: Proceedings of the ASME 2012 international design engineering technical conference & computers and information in engineering conference, Chicago, IL, USA, Aug 12–15, pp 177–185
Zurück zum Zitat Carpi F, Kastelein N, Talcott M, Pappone C (2011) Magnetically controllable gastrointestinal steering of video capsules. IEEE Trans Biomed Eng 58:231–234CrossRef Carpi F, Kastelein N, Talcott M, Pappone C (2011) Magnetically controllable gastrointestinal steering of video capsules. IEEE Trans Biomed Eng 58:231–234CrossRef
Zurück zum Zitat Chan S, Liaw H (1996) Generalized impedance control of robot for assembly tasks requiring compliant manipulation. IEEE Trans Ind Electron 43(4):453–461CrossRef Chan S, Liaw H (1996) Generalized impedance control of robot for assembly tasks requiring compliant manipulation. IEEE Trans Ind Electron 43(4):453–461CrossRef
Zurück zum Zitat Chen M, Lin T, Hung S, Fu L (2012) Design and experiment of a macro-micro planar maglev positioning system. IEEE Trans Ind Electron 59(11):4128–4139CrossRef Chen M, Lin T, Hung S, Fu L (2012) Design and experiment of a macro-micro planar maglev positioning system. IEEE Trans Ind Electron 59(11):4128–4139CrossRef
Zurück zum Zitat Erhart S, Hirche S (2015) Internal force analysis and load distribution for cooperative multi-robot manipulation. IEEE Trans Robot 31(5):1238–1243CrossRef Erhart S, Hirche S (2015) Internal force analysis and load distribution for cooperative multi-robot manipulation. IEEE Trans Robot 31(5):1238–1243CrossRef
Zurück zum Zitat Gueaieb W, Karray F, Salah A (2007) A robust hybrid intelligent position/force control scheme for cooperative manipulation. IEEE/ASME TMech 12(2):109–125CrossRef Gueaieb W, Karray F, Salah A (2007) A robust hybrid intelligent position/force control scheme for cooperative manipulation. IEEE/ASME TMech 12(2):109–125CrossRef
Zurück zum Zitat Heck D, Kostic D, Denasi A, Nijmeijer H (2013) Internal and External force-based impedance control for cooperative manipulation. In: Proceedings of the European Control Conference, Zurich, Switzerland, pp 2299–2304 Heck D, Kostic D, Denasi A, Nijmeijer H (2013) Internal and External force-based impedance control for cooperative manipulation. In: Proceedings of the European Control Conference, Zurich, Switzerland, pp 2299–2304
Zurück zum Zitat Heinrichs B, Nariman S, Thornton-Trump A (1997) Position-based impedance control of an industrial hydraulic manipulator. IEEE Control Syst 17(1):46–52CrossRef Heinrichs B, Nariman S, Thornton-Trump A (1997) Position-based impedance control of an industrial hydraulic manipulator. IEEE Control Syst 17(1):46–52CrossRef
Zurück zum Zitat Hu C, Wang Z, Zhu Y, Zhang M, Liu H (2016) Performance-oriented precision LARC tracking motion control of a magnetically levitated planar motor with comparative experiments. IEEE Trans Ind Electron 63(9):5763–5773CrossRef Hu C, Wang Z, Zhu Y, Zhang M, Liu H (2016) Performance-oriented precision LARC tracking motion control of a magnetically levitated planar motor with comparative experiments. IEEE Trans Ind Electron 63(9):5763–5773CrossRef
Zurück zum Zitat Jian M, Tal J, Luh Y, Zheng Y (1990) Compliant Coordination control of two moving industrial robots. IEEE Trans Robot Autom 6(3):186–191 Jian M, Tal J, Luh Y, Zheng Y (1990) Compliant Coordination control of two moving industrial robots. IEEE Trans Robot Autom 6(3):186–191
Zurück zum Zitat Khamesee M, Kato N, Nomura Y, Nakamura T (2002) Design and control of a microrobotic system using magnetic levitation. IEEE TMech 7(1):1–14 Khamesee M, Kato N, Nomura Y, Nakamura T (2002) Design and control of a microrobotic system using magnetic levitation. IEEE TMech 7(1):1–14
Zurück zum Zitat Kummer M, Abbott J, Kratochvil B, Borer R, Sengul A, Nelson B (2010) OctoMag: an electromagnetic system for 5-DOF wireless micromanipulation. IEEE Trans Robot 26(6):1006–1017CrossRef Kummer M, Abbott J, Kratochvil B, Borer R, Sengul A, Nelson B (2010) OctoMag: an electromagnetic system for 5-DOF wireless micromanipulation. IEEE Trans Robot 26(6):1006–1017CrossRef
Zurück zum Zitat Liang C, Wang F, Tian Y, Zhao X, Zhang D (2017) Development of a high speed and precision wire clamp with both position and force regulation. Robot Comput Integr Manuf 44:208–217CrossRef Liang C, Wang F, Tian Y, Zhao X, Zhang D (2017) Development of a high speed and precision wire clamp with both position and force regulation. Robot Comput Integr Manuf 44:208–217CrossRef
Zurück zum Zitat Masood M, Saleem M, Khan S, Hamza A (2019) Design, closed-form modeling and analysis of SU-8 based electrothermal microgripper for biomedical applications. Microsyst Technol 25(4):1171–1184CrossRef Masood M, Saleem M, Khan S, Hamza A (2019) Design, closed-form modeling and analysis of SU-8 based electrothermal microgripper for biomedical applications. Microsyst Technol 25(4):1171–1184CrossRef
Zurück zum Zitat Mehrtash M, Khamesee M (2013) Micro-domain force estimation using Hall-effect sensors for a magnetic microrobotic station. J Adv Mech Des Syst Manufact 7(1):2–14CrossRef Mehrtash M, Khamesee M (2013) Micro-domain force estimation using Hall-effect sensors for a magnetic microrobotic station. J Adv Mech Des Syst Manufact 7(1):2–14CrossRef
Zurück zum Zitat Mehrtash M, Khamesee M, Tarao S, Tsuda N, Chang J (2012a) Human-assisted virtual reality for a magnetic-haptic micromanipulation platform. Microsyst Technol 18(9–10):1407–1415CrossRef Mehrtash M, Khamesee M, Tarao S, Tsuda N, Chang J (2012a) Human-assisted virtual reality for a magnetic-haptic micromanipulation platform. Microsyst Technol 18(9–10):1407–1415CrossRef
Zurück zum Zitat Mehrtash M, Khamesee MB, Tsuda N, Chang JY (2012b) Motion control of a magnetically levitated microrobot using magnetic fux measurement. Microsyst Technol 18(9–10):1417–1424CrossRef Mehrtash M, Khamesee MB, Tsuda N, Chang JY (2012b) Motion control of a magnetically levitated microrobot using magnetic fux measurement. Microsyst Technol 18(9–10):1417–1424CrossRef
Zurück zum Zitat Mehrtash M, Zhang X, Khamesee M (2015) Bilateral magnetic micromanipulation using off-board force sensor. IEEE/ASME TMech 20(6):3223–3231CrossRef Mehrtash M, Zhang X, Khamesee M (2015) Bilateral magnetic micromanipulation using off-board force sensor. IEEE/ASME TMech 20(6):3223–3231CrossRef
Zurück zum Zitat Park K, Lee S, Yi K, Kim S, Kwak Y, Wang I (1996) Contactless magnetically levitated silicon wafer transport system. Mechatronics 6(5):591–610CrossRef Park K, Lee S, Yi K, Kim S, Kwak Y, Wang I (1996) Contactless magnetically levitated silicon wafer transport system. Mechatronics 6(5):591–610CrossRef
Zurück zum Zitat Villanueva A, Smith C, Priya S (2011) A biomimetic robotic jellyfish (Robojelly) actuated by shape memory alloy composite actuators. Bioinspir Biomimet 6:1–15CrossRef Villanueva A, Smith C, Priya S (2011) A biomimetic robotic jellyfish (Robojelly) actuated by shape memory alloy composite actuators. Bioinspir Biomimet 6:1–15CrossRef
Zurück zum Zitat Wang P, Xu Q (2018) Design and testing of a flexure-based constant-force stage for biological cell micromanipulation. IEEE Trans Autim Sci Eng 15(3):1114–1126CrossRef Wang P, Xu Q (2018) Design and testing of a flexure-based constant-force stage for biological cell micromanipulation. IEEE Trans Autim Sci Eng 15(3):1114–1126CrossRef
Zurück zum Zitat Wang H, Huang Q, Shi Q, Yue T, Chen S, Nakajima M, Takeuchi M, Fukuda T (2015) Automated assembly of vascular-like microtube with repetitive single-step contact manipulation. IEEE Trans Bio Eng 62(11):2620–2628CrossRef Wang H, Huang Q, Shi Q, Yue T, Chen S, Nakajima M, Takeuchi M, Fukuda T (2015) Automated assembly of vascular-like microtube with repetitive single-step contact manipulation. IEEE Trans Bio Eng 62(11):2620–2628CrossRef
Zurück zum Zitat Xu Q (2013) Precision position/force interaction control of a piezoelectric multi morphmicrogripper for micro assembly. IEEE Trans Autim Sci Eng 10(3):503–514CrossRef Xu Q (2013) Precision position/force interaction control of a piezoelectric multi morphmicrogripper for micro assembly. IEEE Trans Autim Sci Eng 10(3):503–514CrossRef
Zurück zum Zitat Xu Q (2017) Design and Development of a novel compliant gripper with integrated position and grasping/interaction force sensing. IEEE Trans Autim Sci Eng 14(3):1415–1428CrossRef Xu Q (2017) Design and Development of a novel compliant gripper with integrated position and grasping/interaction force sensing. IEEE Trans Autim Sci Eng 14(3):1415–1428CrossRef
Metadaten
Titel
Automatic pick-and-place using a magnetically navigated microrobot and a motorized micromanipulator
verfasst von
Xiaodong Zhang
Mir Behrad Khamesee
Publikationsdatum
10.12.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 5/2020
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-019-04719-2

Weitere Artikel der Ausgabe 5/2020

Microsystem Technologies 5/2020 Zur Ausgabe

Neuer Inhalt