Abstract
Conventional visual and manual road crack detection method is labor-consuming, non-precise, dangerous, costly and also it can affect transportation. With crack being the main distress in the actual pavement surface, digital image processing has been widely applied to cracking recognition recently. This paper presents the preprocessing method, segmentation method, the locating method, and a novel convolutional neural network based pavement cracking recognition method in the area of image processing. This paper trains and tests aforementioned 5-layer convolutional neural network on the pavement crack dataset. The experimental result shows that this 5-layer convolutional neural network performs better than that classical conventional machine learning method. Actual pavement images are used to verify the performance of this method, and the results show that the surface crack could be identified correctly and automatically. The convolutional neural network can learn the features of crack well and sort these aircraft with a high classification accuracy.