In the Big Data era, the batch processing of large volumes of data is simply not enough - data needs to be processed fast to support continuous reactions to changing conditions in real-time. Distributed stream processing systems have emerged as platforms of choice for applications that rely on real-time analytics, with Apache Storm [2] being one of the most prevalent representatives. Whether deployed on physical or virtual infrastructures, distributed stream processing systems are expected to make the most out of the available resources, i.e., achieve the highest throughput or lowest latency with the minimum resource utilisation. However, for Storm - as for most such systems - this is a cumbersome trial-and-error procedure, tied to the specific workload that needs to be processed and requiring manual tweaking of resource-related topology parameters. To this end, we propose ARiSTO, a system that automatically decides on the appropriate amount of resources to be provisioned for each node of the Storm workflow topology based on user-defined performance and cost constraints. ARiSTO employs two mechanisms: a static, model-based one, used at bootstrap time to predict the resource-related parameters that better fit the user needs and a dynamic, rule-based one that elastically auto-scales the allocated resources in order to maintain the desired performance even under changes in load. The experimental evaluation of our prototype proves the ability of ARiSto to efficiently decide on the resource-related configuration parameters, maintaining the desired throughput at all times.
Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten
Die B2B-Firmensuche für Industrie und Wirtschaft: Kostenfrei in Firmenprofilen nach Lieferanten, Herstellern, Dienstleistern und Händlern recherchieren.
Unternehmen haben das Innovationspotenzial der eigenen Mitarbeiter auch außerhalb der F&E-Abteilung erkannt. Viele Initiativen zur Partizipation scheitern in der Praxis jedoch häufig. Lesen Sie hier - basierend auf einer qualitativ-explorativen Expertenstudie - mehr über die wesentlichen Problemfelder der mitarbeiterzentrierten Produktentwicklung und profitieren Sie von konkreten Handlungsempfehlungen aus der Praxis. Jetzt gratis downloaden!