Skip to main content
Erschienen in:

01.08.2024 | Original Paper

Automatic soil classification method from CPTU data based on convolutional neural networks

verfasst von: Wenyuan Liu, Liyuan Tong, Yinjuan Sun, Hao Wu, Xin Yan, Songyu Liu

Erschienen in: Bulletin of Engineering Geology and the Environment | Ausgabe 8/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Study on soil classification using piezocone penetration test (CPTU) has accumulated a considerable number of research findings. Inspired by the rapid developments in machine learning, this technique has provided new ideas for the interpretation of CPTU data. However, due to the subjectivity of feature selection and unavoidable noise in the data, soil classification models based on traditional machine learning algorithms have limited performance. Based on a convolutional neural network (CNN), this study proposes an end-to-end intelligent soil classification method that does not require feature engineering and noise reduction processing. Taking the raw CPTU measured data as inputs, the CNN model was trained with the limited data to obtain the corresponding soil types. Before training the model, the four-dimensional cluster soil stratification method was used to achieve accurate positioning of soil layer boundaries and ensure the accuracy of sample labeling. The results show that the CNN model has excellent performance in predicting soil types. It can also achieve high accuracy when complex alternate layers were used as test sets, exhibiting the effectiveness and generalization of the proposed intelligent soil classification method.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat ASTM, D2487-11 (2011) Standard Practice for Classification of Soils for Engineering purposes (Unified Soil Classification System). ASTM International ASTM, D2487-11 (2011) Standard Practice for Classification of Soils for Engineering purposes (Unified Soil Classification System). ASTM International
Zurück zum Zitat Carvalho F, de Barbosa AT, Pimentel GBN (2013) J.T., Partitioning Fuzzy C-Means Clustering Algorithms for Interval-Valued Data Based on City-Block Distances, in: 2013 Brazilian Conference on Intelligent Systems. Presented at the 2013 Brazilian Conference on Intelligent Systems, pp. 113–118. https://doi.org/10.1109/BRACIS.2013.27 Carvalho F, de Barbosa AT, Pimentel GBN (2013) J.T., Partitioning Fuzzy C-Means Clustering Algorithms for Interval-Valued Data Based on City-Block Distances, in: 2013 Brazilian Conference on Intelligent Systems. Presented at the 2013 Brazilian Conference on Intelligent Systems, pp. 113–118. https://​doi.​org/​10.​1109/​BRACIS.​2013.​27
Zurück zum Zitat He KM, Zhang XY, Ren SQ, Sun J (2016) Deep Residual Learning for Image Recognition, in: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Presented at the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. https://doi.org/10.1109/CVPR.2016.90 He KM, Zhang XY, Ren SQ, Sun J (2016) Deep Residual Learning for Image Recognition, in: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Presented at the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. https://​doi.​org/​10.​1109/​CVPR.​2016.​90
Zurück zum Zitat Larsson R, Mulabdic M (1991) Piezocone tests in Clay[R]. Report 42. Swedish Geotechnical Institute, Linköping Larsson R, Mulabdic M (1991) Piezocone tests in Clay[R]. Report 42. Swedish Geotechnical Institute, Linköping
Zurück zum Zitat Lunne T, Robertson PK, Powell JJM (1997) Cone penetration testing in Geotechnical Practice[M]. Blackie Academic and Professional, London Lunne T, Robertson PK, Powell JJM (1997) Cone penetration testing in Geotechnical Practice[M]. Blackie Academic and Professional, London
Zurück zum Zitat Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L, Desmaison A, Kopf A, Yang E, DeVito Z, Raison M, Tejani A, Chilamkurthy S, Steiner B, Fang L, Bai J, Chintala S (2019) PyTorch: An Imperative Style, High-Performance Deep Learning Library, in: Wallach, H., Larochelle, H., Beygelzimer, A., d’Alche-Buc, F., Fox, E., Garnett, R. (Eds.), Advances in Neural Information Processing Systems 32 (Nips 2019). Neural Information Processing Systems (nips), La Jolla Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L, Desmaison A, Kopf A, Yang E, DeVito Z, Raison M, Tejani A, Chilamkurthy S, Steiner B, Fang L, Bai J, Chintala S (2019) PyTorch: An Imperative Style, High-Performance Deep Learning Library, in: Wallach, H., Larochelle, H., Beygelzimer, A., d’Alche-Buc, F., Fox, E., Garnett, R. (Eds.), Advances in Neural Information Processing Systems 32 (Nips 2019). Neural Information Processing Systems (nips), La Jolla
Zurück zum Zitat Robertson PK (1998) Evaluating cyclic liquefaction potential using the cone penetration test 35, 18 Robertson PK (1998) Evaluating cyclic liquefaction potential using the cone penetration test 35, 18
Zurück zum Zitat Tumay MT, Abu-Farsakh MY, Zhang ZJ (2008) From theory to implementation of a CPT-Based probabilistic and fuzzy soil classification, in: from research to practice in geotechnical engineering. Presented at the Symposium Honoring Dr. John H. Schmertmann for His Contributions to Civil Engineering at Research to Practice in Geotechnical Engineering Congress 2008, American Society of Civil Engineers, New Orleans, Louisiana, United States, pp. 259–276. https://doi.org/10.1061/40962(325)5 Tumay MT, Abu-Farsakh MY, Zhang ZJ (2008) From theory to implementation of a CPT-Based probabilistic and fuzzy soil classification, in: from research to practice in geotechnical engineering. Presented at the Symposium Honoring Dr. John H. Schmertmann for His Contributions to Civil Engineering at Research to Practice in Geotechnical Engineering Congress 2008, American Society of Civil Engineers, New Orleans, Louisiana, United States, pp. 259–276. https://​doi.​org/​10.​1061/​40962(325)5
Zurück zum Zitat VIVATRAT V (1978) Cone Penetration in Clays. Doctor of Philosophy thesis, Dept. of Civil Engineering, Massachusetts Inst. of Technology, Cambridge, Mass VIVATRAT V (1978) Cone Penetration in Clays. Doctor of Philosophy thesis, Dept. of Civil Engineering, Massachusetts Inst. of Technology, Cambridge, Mass
Zurück zum Zitat Yan JX, Luo L, Xu CH, Deng C, Huang H (2022) Noise Is Also Useful: Negative Correlation-Steered Latent Contrastive Learning, in: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Presented at the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 31–40. https://doi.org/10.1109/CVPR52688.2022.00013 Yan JX, Luo L, Xu CH, Deng C, Huang H (2022) Noise Is Also Useful: Negative Correlation-Steered Latent Contrastive Learning, in: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Presented at the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 31–40. https://​doi.​org/​10.​1109/​CVPR52688.​2022.​00013
Metadaten
Titel
Automatic soil classification method from CPTU data based on convolutional neural networks
verfasst von
Wenyuan Liu
Liyuan Tong
Yinjuan Sun
Hao Wu
Xin Yan
Songyu Liu
Publikationsdatum
01.08.2024
Verlag
Springer Berlin Heidelberg
Erschienen in
Bulletin of Engineering Geology and the Environment / Ausgabe 8/2024
Print ISSN: 1435-9529
Elektronische ISSN: 1435-9537
DOI
https://doi.org/10.1007/s10064-024-03815-6