Skip to main content
Erschienen in: Journal of Computational Neuroscience 1/2011

01.02.2011

Automating the design of informative sequences of sensory stimuli

verfasst von: Jeremy Lewi, David M. Schneider, Sarah M. N. Woolley, Liam Paninski

Erschienen in: Journal of Computational Neuroscience | Ausgabe 1/2011

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Adaptive stimulus design methods can potentially improve the efficiency of sensory neurophysiology experiments significantly; however, designing optimal stimulus sequences in real time remains a serious technical challenge. Here we describe two approximate methods for generating informative stimulus sequences: the first approach provides a fast method for scoring the informativeness of a batch of specific potential stimulus sequences, while the second method attempts to compute an optimal stimulus distribution from which the experimenter may easily sample. We apply these methods to single-neuron spike train data recorded from the auditory midbrain of zebra finches, and demonstrate that the resulting stimulus sequences do in fact provide more information about neuronal tuning in a shorter amount of time than do more standard experimental designs.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
The careful reader will have noticed that Eq. (15) depends on the future responses r t + i, through the projected Fisher information D(r t + i, ρ t + i). However, recall that we are taking the expectation of Eq. (15), by plugging into Eq. (4), and the expectation of each term in Eq. (15) may be computed directly using the methods described above, without violating any causality constraints.
 
2
In Lewi et al. (2009), we discuss analytical methods for computing the optimal stimuli over sets of infinite cardinality, e.g., ellipsoidal sets of bounded squared norm in stimulus space. These methods relied strongly on the one-dimensional nature of the projected stimulus ρ t and are unfortunately not applicable in the b > 1 case, where the projected stimulus is b-dimensional instead of just one-dimensional.
 
3
79 × 20 coefficients of the STRF + 8 spike history coefficients + 1 bias term = 1,589 unknown parameters.
 
4
If C t is low-rank then \(C_t^{-1}\) is infinite in some directions, and the derivation will not hold because the contribution of \(C_t^{-1}\) will not become negligible as b→ ∞. In this case we can simply use a truncated design: i.e., we maximize the information in directions for which our prior uncertainty is not zero. To accomplish this we simply project \({\ensuremath{\theta}}\) into the lower-dimensional space corresponding to the space spanned by non-zero eigenvectors of C t . Alternately, in the case that C t has some very small but positive eigenvalues, it may be possible to approach the full objective function directly, though we have not pursued this direction systematically.
 
5
It is also worth noting that the log term will typically be much smaller than the other terms when the stimulus dimension d s is large, since the first three terms in Eq. (25) scale linearly with d s .
 
Literatur
Zurück zum Zitat Anderson, M., & Micheli-Tzanakou, E. (1998). Computer-brain interaction to optimize auditory stimuli based on neuronal responses. In Bioengineering conference, 1998. Proceedings of the IEEE 24th Annual Northeast (pp. 18–20). Anderson, M., & Micheli-Tzanakou, E. (1998). Computer-brain interaction to optimize auditory stimuli based on neuronal responses. In Bioengineering conference, 1998. Proceedings of the IEEE 24th Annual Northeast (pp. 18–20).
Zurück zum Zitat Benda, J., Gollisch, T., Machens, C. K., & Herz, A. V. (2007). From response to stimulus: Adaptive sampling in sensory physiology. Current Opinion in Neurobiology, 17(4), 430–436.CrossRefPubMed Benda, J., Gollisch, T., Machens, C. K., & Herz, A. V. (2007). From response to stimulus: Adaptive sampling in sensory physiology. Current Opinion in Neurobiology, 17(4), 430–436.CrossRefPubMed
Zurück zum Zitat Calabrese, A., Schumacher, J., Schneider, D., Woolley, S., & Paninski, L. (2010). A generalized linear model for estimating receptive fields from midbrain responses to natural sounds. In: Conference Abstract: Computational and Systems Neuroscience. doi:10.3389/conf.fnins.2010.03.00126 Calabrese, A., Schumacher, J., Schneider, D., Woolley, S., & Paninski, L. (2010). A generalized linear model for estimating receptive fields from midbrain responses to natural sounds. In: Conference Abstract: Computational and Systems Neuroscience. doi:10.​3389/​conf.​fnins.​2010.​03.​00126
Zurück zum Zitat Chaloner, K., & Verdinelli, I. (1995). Bayesian experimental design: A review. Statistical Science, 10(3), 273–304.CrossRef Chaloner, K., & Verdinelli, I. (1995). Bayesian experimental design: A review. Statistical Science, 10(3), 273–304.CrossRef
Zurück zum Zitat Chen, Z., Becker, S., Bondy, J., Bruce, I. C., & Haykin, S. C. (2005). A novel model-based hearing compensation design using a gradient-free optimization method. Neural Computation, 17(12), 2648–2671.CrossRefPubMed Chen, Z., Becker, S., Bondy, J., Bruce, I. C., & Haykin, S. C. (2005). A novel model-based hearing compensation design using a gradient-free optimization method. Neural Computation, 17(12), 2648–2671.CrossRefPubMed
Zurück zum Zitat Cover, T. M., & Thomas, J. A. (1991). Elements of information theory. New York: Wiley.CrossRef Cover, T. M., & Thomas, J. A. (1991). Elements of information theory. New York: Wiley.CrossRef
Zurück zum Zitat David, S., Mesgarani, N., & Shamma, S. (2007). Estimating sparse spectro-temporal receptive fields with natural stimuli. Network, 18, 191–212.CrossRefPubMed David, S., Mesgarani, N., & Shamma, S. (2007). Estimating sparse spectro-temporal receptive fields with natural stimuli. Network, 18, 191–212.CrossRefPubMed
Zurück zum Zitat deCharms, R. C., Blake, D. T., & Merzenich, M. M. (1998). Optimizing sound features for cortical neurons. Science, 280(5368), 1439–1443.CrossRefPubMed deCharms, R. C., Blake, D. T., & Merzenich, M. M. (1998). Optimizing sound features for cortical neurons. Science, 280(5368), 1439–1443.CrossRefPubMed
Zurück zum Zitat Edin, F., Machens, C., Schutze, H., & Herz, A. (2004). Searching for optimal sensory signals: Iterative stimulus reconstruction in closed-loop experiments. Journal of Computational Neuroscience, 17(1), 47–56.CrossRefPubMed Edin, F., Machens, C., Schutze, H., & Herz, A. (2004). Searching for optimal sensory signals: Iterative stimulus reconstruction in closed-loop experiments. Journal of Computational Neuroscience, 17(1), 47–56.CrossRefPubMed
Zurück zum Zitat Fedorov, V. V. (1972). Theory of optimal experiments. New York: Academic Press. Fedorov, V. V. (1972). Theory of optimal experiments. New York: Academic Press.
Zurück zum Zitat Foldiak, P. (2001). Stimulus optimisation in primary visual cortex. Neurocomputing, 38–40, 1217–1222.CrossRef Foldiak, P. (2001). Stimulus optimisation in primary visual cortex. Neurocomputing, 38–40, 1217–1222.CrossRef
Zurück zum Zitat Gill, P., Zhang, J., Woolley, S., Fremouw, T., & Theunissen, F. (2006). Sound representation methods for spectro-temporal receptive field estimation. Journal of Computational Neuroscience, 21, 5–20.CrossRefPubMed Gill, P., Zhang, J., Woolley, S., Fremouw, T., & Theunissen, F. (2006). Sound representation methods for spectro-temporal receptive field estimation. Journal of Computational Neuroscience, 21, 5–20.CrossRefPubMed
Zurück zum Zitat Hsu, A., Woolley, S. M. N., Fremouw, T. E., & Theunissen, F. E. (2004). Modulation power and phase spectrum of natural sounds enhance neural encoding performed by single auditory neurons. Journal of Neuroscience, 24(41), 9201–9211.CrossRefPubMed Hsu, A., Woolley, S. M. N., Fremouw, T. E., & Theunissen, F. E. (2004). Modulation power and phase spectrum of natural sounds enhance neural encoding performed by single auditory neurons. Journal of Neuroscience, 24(41), 9201–9211.CrossRefPubMed
Zurück zum Zitat Kwon, W. H., & Han, S. (2005). Receding horizon control: Model predictive control for state models. New York: Springer. Kwon, W. H., & Han, S. (2005). Receding horizon control: Model predictive control for state models. New York: Springer.
Zurück zum Zitat Lewi, J., Butera, R., & Paninski, L. (2007). Efficient active learning with generalized linear models. AISTATS07. Lewi, J., Butera, R., & Paninski, L. (2007). Efficient active learning with generalized linear models. AISTATS07.
Zurück zum Zitat Lewi, J., Butera, R., Schneider, D. M., Woolley, S. M. N., & Paninski, L. (2008). Designing neurophysiology experiments to optimally constrain receptive field models along parametric submanifolds. NIPS, 945–952. Lewi, J., Butera, R., Schneider, D. M., Woolley, S. M. N., & Paninski, L. (2008). Designing neurophysiology experiments to optimally constrain receptive field models along parametric submanifolds. NIPS, 945–952.
Zurück zum Zitat Lewi, J., Butera, R., & Paninski, L. (2009). Sequential optimal design of neurophysiology experiments. Neural Computation, 21(3), 619–687.CrossRefPubMed Lewi, J., Butera, R., & Paninski, L. (2009). Sequential optimal design of neurophysiology experiments. Neural Computation, 21(3), 619–687.CrossRefPubMed
Zurück zum Zitat Luczak, A., Bartho, P., Marguet, S., Buzsaki, G., & Harris, K. (2007). Sequential structure of neocortical spontaneous activity in vivo. PNAS, 104, 347–352.CrossRefPubMed Luczak, A., Bartho, P., Marguet, S., Buzsaki, G., & Harris, K. (2007). Sequential structure of neocortical spontaneous activity in vivo. PNAS, 104, 347–352.CrossRefPubMed
Zurück zum Zitat Machens, C. (2002). Adaptive sampling by information maximization. Physical Review Letters, 88, 228104–228107.CrossRefPubMed Machens, C. (2002). Adaptive sampling by information maximization. Physical Review Letters, 88, 228104–228107.CrossRefPubMed
Zurück zum Zitat Machens, C., Gollisch, T., Kolesnikova, O., & Herz, A. (2005). Testing the efficiency of sensory coding with optimal stimulus ensembles. Neuron, 47(3), 447–456.CrossRefPubMed Machens, C., Gollisch, T., Kolesnikova, O., & Herz, A. (2005). Testing the efficiency of sensory coding with optimal stimulus ensembles. Neuron, 47(3), 447–456.CrossRefPubMed
Zurück zum Zitat Machens, C. K., Wehr, M., & Zador, A. M. (2003). Spectro-temporal receptive fields of subthreshold responses in auditory cortex. Advances in Neural Information Processing Systems 15, 133–140. Machens, C. K., Wehr, M., & Zador, A. M. (2003). Spectro-temporal receptive fields of subthreshold responses in auditory cortex. Advances in Neural Information Processing Systems 15, 133–140.
Zurück zum Zitat Mackay, D. J. C. (1992). Information-based objective functions for active data selection. Neural Computation, 4(4), 590–604.CrossRef Mackay, D. J. C. (1992). Information-based objective functions for active data selection. Neural Computation, 4(4), 590–604.CrossRef
Zurück zum Zitat O’Connor, K. N., Petkov, C. I., & Sutter, M. L. (2005). Adaptive stimulus optimization for auditory cortical neurons. Journal of Neurophysiology, 94(6), 4051–4067.CrossRefPubMed O’Connor, K. N., Petkov, C. I., & Sutter, M. L. (2005). Adaptive stimulus optimization for auditory cortical neurons. Journal of Neurophysiology, 94(6), 4051–4067.CrossRefPubMed
Zurück zum Zitat Ohki, K., Chung, S., Ch’ng, Y., Kara, P., & Reid, C. (2005). Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex. Nature, 433, 597–603.CrossRefPubMed Ohki, K., Chung, S., Ch’ng, Y., Kara, P., & Reid, C. (2005). Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex. Nature, 433, 597–603.CrossRefPubMed
Zurück zum Zitat Paninski, L. (2004). Maximum likelihood estimation of cascade point-process neural encoding models. Network: Computation in Neural Systems, 15, 243–262.CrossRef Paninski, L. (2004). Maximum likelihood estimation of cascade point-process neural encoding models. Network: Computation in Neural Systems, 15, 243–262.CrossRef
Zurück zum Zitat Paninski, L. (2005). Asymptotic theory of information-theoretic experimental design. Neural Computation, 17(7), 1480–1507.CrossRefPubMed Paninski, L. (2005). Asymptotic theory of information-theoretic experimental design. Neural Computation, 17(7), 1480–1507.CrossRefPubMed
Zurück zum Zitat Paninski, L., Pillow, J., & Lewi, J. (2007). Statistical models for neural encoding, decoding, and optimal stimulus design. In P. Cisek, T. Drew, & J. Kalaska (Eds.), Computational neuroscience: Progress in brain research. New York: Elsevier. Paninski, L., Pillow, J., & Lewi, J. (2007). Statistical models for neural encoding, decoding, and optimal stimulus design. In P. Cisek, T. Drew, & J. Kalaska (Eds.), Computational neuroscience: Progress in brain research. New York: Elsevier.
Zurück zum Zitat Pillow, J., Shlens, J., Paninski, L., Sher, A., Litke, A., Chichilnisky, E., et al. (2008). Spatiotemporal correlations and visual signaling in a complete neuronal population. Nature, 454, 995–999.CrossRefPubMed Pillow, J., Shlens, J., Paninski, L., Sher, A., Litke, A., Chichilnisky, E., et al. (2008). Spatiotemporal correlations and visual signaling in a complete neuronal population. Nature, 454, 995–999.CrossRefPubMed
Zurück zum Zitat Segev, R., Goodhouse, J., Puchalla, J., & Berry, M. J. (2004). Recording spikes from a large fraction of the ganglion cells in a retinal patch. Nature Neuroscience, 7(10), 1155–1162.CrossRef Segev, R., Goodhouse, J., Puchalla, J., & Berry, M. J. (2004). Recording spikes from a large fraction of the ganglion cells in a retinal patch. Nature Neuroscience, 7(10), 1155–1162.CrossRef
Zurück zum Zitat Singh, N. C., & Theunissen, F. E. (2003). Modulation spectra of natural sounds and ethological theories of auditory processing. The Journal of the Acoustical Society of America, 114(6), 3394–3411.CrossRefPubMed Singh, N. C., & Theunissen, F. E. (2003). Modulation spectra of natural sounds and ethological theories of auditory processing. The Journal of the Acoustical Society of America, 114(6), 3394–3411.CrossRefPubMed
Zurück zum Zitat Smyth, D., Willmore, B., Baker, G., Thompson, I., & Tolhurst, D. (2003). The receptive-field organization of simple cells in primary visual cortex of ferrets under natural scene stimulation. Journal of Neuroscience, 23, 4746–4759.PubMed Smyth, D., Willmore, B., Baker, G., Thompson, I., & Tolhurst, D. (2003). The receptive-field organization of simple cells in primary visual cortex of ferrets under natural scene stimulation. Journal of Neuroscience, 23, 4746–4759.PubMed
Zurück zum Zitat Theunissen, F. E., David, S. V., Singh, N. C., Hsu, A., Vinje, W. E., & Gallant, J. L. (2001). Estimating spatio-temporal receptive fields of auditory and visual neurons from their responses to natural stimuli. Network-Computation in Neural Systems, 12(3), 289–316. Theunissen, F. E., David, S. V., Singh, N. C., Hsu, A., Vinje, W. E., & Gallant, J. L. (2001). Estimating spatio-temporal receptive fields of auditory and visual neurons from their responses to natural stimuli. Network-Computation in Neural Systems, 12(3), 289–316.
Zurück zum Zitat Theunissen, F. E., Sen, K., & Doupe, A. J. (2000). Spectral-temporal receptive fields of nonlinear auditory neurons obtained using natural sounds. Journal of Neuroscience, 20(6), 2315–2331.PubMed Theunissen, F. E., Sen, K., & Doupe, A. J. (2000). Spectral-temporal receptive fields of nonlinear auditory neurons obtained using natural sounds. Journal of Neuroscience, 20(6), 2315–2331.PubMed
Zurück zum Zitat Theunissen, F. E., Woolley, S. M. N., Hsu, A., & Fremouw, T. (2004). Methods for the analysis of auditory processing in the brain. Annals of the New York Academy of Sciences, 1016, 187–207.CrossRefPubMed Theunissen, F. E., Woolley, S. M. N., Hsu, A., & Fremouw, T. (2004). Methods for the analysis of auditory processing in the brain. Annals of the New York Academy of Sciences, 1016, 187–207.CrossRefPubMed
Zurück zum Zitat Tzanakou, E., Michalak, R., & Harth, E. (1979). The alopex process: Visual receptive fields by response feedback. Biological Cybernetics, 35, 161–174.CrossRefPubMed Tzanakou, E., Michalak, R., & Harth, E. (1979). The alopex process: Visual receptive fields by response feedback. Biological Cybernetics, 35, 161–174.CrossRefPubMed
Zurück zum Zitat Woolley, S. M., Gill, P. R., & Theunissen, F. E. (2006). Stimulus-dependent auditory tuning results in synchronous population coding of vocalizations in the songbird midbrain. The Journal of Neuroscience, 26, 2499–2512.CrossRefPubMed Woolley, S. M., Gill, P. R., & Theunissen, F. E. (2006). Stimulus-dependent auditory tuning results in synchronous population coding of vocalizations in the songbird midbrain. The Journal of Neuroscience, 26, 2499–2512.CrossRefPubMed
Zurück zum Zitat Woolley, S. M. N., & Casseday, J. H. (2004). Response properties of single neurons in the zebra finch auditory midbrain: Response patterns, frequency coding, intensity coding, and spike latencies. Journal of Neurophysiology, 91(1), 136–151.CrossRefPubMed Woolley, S. M. N., & Casseday, J. H. (2004). Response properties of single neurons in the zebra finch auditory midbrain: Response patterns, frequency coding, intensity coding, and spike latencies. Journal of Neurophysiology, 91(1), 136–151.CrossRefPubMed
Zurück zum Zitat Woolley, S. M. N., & Casseday, J. H. (2005). Processing of modulated sounds in the zebra finch auditory midbrain: Responses to noise, frequency sweeps, and sinusoidal amplitude modulations. Journal of Neurophysiology, 94(2), 1143–1157.CrossRefPubMed Woolley, S. M. N., & Casseday, J. H. (2005). Processing of modulated sounds in the zebra finch auditory midbrain: Responses to noise, frequency sweeps, and sinusoidal amplitude modulations. Journal of Neurophysiology, 94(2), 1143–1157.CrossRefPubMed
Zurück zum Zitat Yamane, Y., Carlson, E., Bowman, K., Wang, Z., & Connor, C. E. (2008). A neural code for three-dimensional object shape in macaque inferotemporal cortex. Nature Neuroscience, 11, 1352–1360.CrossRefPubMed Yamane, Y., Carlson, E., Bowman, K., Wang, Z., & Connor, C. E. (2008). A neural code for three-dimensional object shape in macaque inferotemporal cortex. Nature Neuroscience, 11, 1352–1360.CrossRefPubMed
Metadaten
Titel
Automating the design of informative sequences of sensory stimuli
verfasst von
Jeremy Lewi
David M. Schneider
Sarah M. N. Woolley
Liam Paninski
Publikationsdatum
01.02.2011
Verlag
Springer US
Erschienen in
Journal of Computational Neuroscience / Ausgabe 1/2011
Print ISSN: 0929-5313
Elektronische ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-010-0248-1

Weitere Artikel der Ausgabe 1/2011

Journal of Computational Neuroscience 1/2011 Zur Ausgabe