Skip to main content

Tipp

Weitere Kapitel dieses Buchs durch Wischen aufrufen

2021 | OriginalPaper | Buchkapitel

7. Automatisierte Qualitätssicherung via Image Mining und Computer Vision – Literaturrecherche und Prototyp

verfasst von : Sebastian Trinks

Erschienen in: Big Data Analytics

Verlag: Springer Fachmedien Wiesbaden

Zusammenfassung

Systeme zur Defekterkennung und Qualitätssicherung in der Produktion verfolgen das Ziel, Ausschussraten zu minimieren und Qualitätsstandards einzuhalten. Die dadurch angestrebte Reduktion der Produktionskosten folgt dem übergeordneten Ziel, der Maximierung der Wertschöpfung. Zu diesem Zweck lassen sich bildbasierende- sowie analytische Methoden und Techniken kombinieren. Die Konzepte Computer Vision und Image Mining bilden hierbei die Grundlage, um aus Bilddaten einen Wissensgewinn im Hinblick auf die Produktqualität zu generieren. Im Rahmen dieses Beitrages wurde ein Design Artefakt in Form eines Prototyps zur Defekterkennung und Qualitätssicherung im Bereich der Additiven Fertigung mittels eines gestaltungsorientierten Forschungsansatzes entwickelt. Die Wissensbasis für diesen Ansatz wurde innerhalb einer strukturierten Literaturanalysen erarbeitet. Der Fokus hierbei liegt auf der Identifikation und Analyse von besagten Systemen in den verschiedenen Bereichen und Branchen der Produktion. Dabei ließen sich eine Reihe von Techniken und Methoden identifizieren, die sich in den Sektor der Additiven Fertigung übertragen und gewinnbringend einsetzen lassen. Es handelt sich dabei um Methoden aus den Bereichen der Bildaufnahme, der Vorverarbeitung sowie der algorithmischen Analyse. Es konnten zudem keine Barrieren für den Einsatz von Computer-Vision- und Image-Mining-Techniken identifiziert werden, die einen Einsatz auf bestimmte Bereiche der Produktionen und Produktionsszenarien begrenzen. Die Ergebnisse dieses Beitrags stellen somit grundlegende Erkenntnisse für die Entwicklung anwendungsbezogener Defekterkennungs- und Qualitätssicherungssysteme in verschiedenen Branchen und Bereichen der Produktion dar.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Data Mining beschreibt den Teilschritt der Datenanalyse, die dem Zweck der Wissensentdeckung in großen Datenbeständen dient. In der Praxis wird teilweise der gesamte Prozess der Wissensaufdeckung, welcher darauf zielt implizit vorhandene, gültige, neuartige und potenziell nützlicher Muster aufzudecken, als Data Mining bezeichnet (Haneke et al. 2018).
 
Literatur
Zurück zum Zitat Ashjaei M, Bengtsson M (2017) Enhancing smart maintenance management using fog computing technology. In: Industrial Engineering and Engineering Management (IEEM). IEEE international conference on IEEE, Singapore, S 1561–1565 Ashjaei M, Bengtsson M (2017) Enhancing smart maintenance management using fog computing technology. In: Industrial Engineering and Engineering Management (IEEM). IEEE international conference on IEEE, Singapore, S 1561–1565
Zurück zum Zitat Bikas H, Stavropoulos P, Chryssolouris G (2016) Additive manufacturing methods and modelling approaches: a critical review. Int J Adv Manuf Technol 83(1–4):389–405 CrossRef Bikas H, Stavropoulos P, Chryssolouris G (2016) Additive manufacturing methods and modelling approaches: a critical review. Int J Adv Manuf Technol 83(1–4):389–405 CrossRef
Zurück zum Zitat Birlutiu A, Burlacu A, Kadar M, Onita D (2017) Defect detection in porcelain industry based on deep learning techniques. In: 2017 19th international symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), Timisoara Birlutiu A, Burlacu A, Kadar M, Onita D (2017) Defect detection in porcelain industry based on deep learning techniques. In: 2017 19th international symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), Timisoara
Zurück zum Zitat Buchenau M, Suri J F (2000). Experience prototyping. In Proceedings of the 3rd conference on Designing interactive systems: processes, practices, methods, and techniques, S 424–433 Buchenau M, Suri J F (2000). Experience prototyping. In Proceedings of the 3rd conference on Designing interactive systems: processes, practices, methods, and techniques, S 424–433
Zurück zum Zitat Cooper HM (1988) Organizing knowledge syntheses: a taxonomy of literature reviews. Knowl Soc 104(1):104 Cooper HM (1988) Organizing knowledge syntheses: a taxonomy of literature reviews. Knowl Soc 104(1):104
Zurück zum Zitat Dais S (2017) Industrie 4.0 – Anstoß, Vision, Vorgehen. In: Handbuch Industrie 4.0, Bd 4. Springer, Berlin, S 261–277 CrossRef Dais S (2017) Industrie 4.0 – Anstoß, Vision, Vorgehen. In: Handbuch Industrie 4.0, Bd 4. Springer, Berlin, S 261–277 CrossRef
Zurück zum Zitat Dao NN, Lee Y, Cho S, Kim E, Chung KS, Keum C (2017) Multi-tier multi-access edge computing: the role for the fourth industrial revolution. In: Information and Communication Technology Convergence (ICTC), 2017 international conference, Jeju Dao NN, Lee Y, Cho S, Kim E, Chung KS, Keum C (2017) Multi-tier multi-access edge computing: the role for the fourth industrial revolution. In: Information and Communication Technology Convergence (ICTC), 2017 international conference, Jeju
Zurück zum Zitat Divyadevi R, Kumar BV (2019) Survey of automated fabric inspection in textile industries. In: 2019 international conference on Computer Communication and Informatics (ICCCI), Coimbatore Divyadevi R, Kumar BV (2019) Survey of automated fabric inspection in textile industries. In: 2019 international conference on Computer Communication and Informatics (ICCCI), Coimbatore
Zurück zum Zitat Dorer K (2018) Deep learning. In: Haneke U, Trahasch S, Zimmer M, Felden C (Hrsg) Data science. dpunkt.verlag GmbH, Heidelberg, S 101–120 Dorer K (2018) Deep learning. In: Haneke U, Trahasch S, Zimmer M, Felden C (Hrsg) Data science. dpunkt.verlag GmbH, Heidelberg, S 101–120
Zurück zum Zitat Edris MZB, Jawad MS, Zakaria Z (2015) Surface defect detection and neural network recognition of automotive body panels. In: 2015 IEEE International Conference on Control System, Computing and Engineering (ICCSCE). IEEE, George Town Edris MZB, Jawad MS, Zakaria Z (2015) Surface defect detection and neural network recognition of automotive body panels. In: 2015 IEEE International Conference on Control System, Computing and Engineering (ICCSCE). IEEE, George Town
Zurück zum Zitat Ennouni A, Filali Y, Sabri MA, Aarab A (2017) A review on image mining. In: Intelligent Systems and Computer Vision (ISCV). IEEE, Fez, S 1–7 Ennouni A, Filali Y, Sabri MA, Aarab A (2017) A review on image mining. In: Intelligent Systems and Computer Vision (ISCV). IEEE, Fez, S 1–7
Zurück zum Zitat Escamilla-Ambrosio PJ, Rodríguez-Mota A, Aguirre-Anaya E, Acosta-Bermejo R, Salinas-Rosales M (2018) Distributing computing in the internet of things: cloud, fog and edge computing overview. In: NEO 2016. Springer, Berlin, S 87–115 Escamilla-Ambrosio PJ, Rodríguez-Mota A, Aguirre-Anaya E, Acosta-Bermejo R, Salinas-Rosales M (2018) Distributing computing in the internet of things: cloud, fog and edge computing overview. In: NEO 2016. Springer, Berlin, S 87–115
Zurück zum Zitat Funahashi T, Taki K, Koshimizu H, Kaneko A (2015) Fast and robust visual inspection system for tire surface thin defect. In: 2015 21st Korea-Japan joint workshop on Frontiers of Computer Vision (FCV). IEEE, Mokpo Funahashi T, Taki K, Koshimizu H, Kaneko A (2015) Fast and robust visual inspection system for tire surface thin defect. In: 2015 21st Korea-Japan joint workshop on Frontiers of Computer Vision (FCV). IEEE, Mokpo
Zurück zum Zitat Hamdi AA, Fouad MM, Sayed MS, Hadhoud MM (2017) Patterned fabric defect detection system using near infrared imaging. In: 2017 eighth international conference on Intelligent Computing and Information Systems (ICICIS). IEEE, Cairo Hamdi AA, Fouad MM, Sayed MS, Hadhoud MM (2017) Patterned fabric defect detection system using near infrared imaging. In: 2017 eighth international conference on Intelligent Computing and Information Systems (ICICIS). IEEE, Cairo
Zurück zum Zitat Han L, Huang X (2016) A study on defect detection of magnetic tile based on the machine vision technology. In: Proceedings of the 5th international conference on mechatronics and control engineering. Shanghai Han L, Huang X (2016) A study on defect detection of magnetic tile based on the machine vision technology. In: Proceedings of the 5th international conference on mechatronics and control engineering. Shanghai
Zurück zum Zitat Haneke U, Trahasch S, Zimmer M, Felden C (2018) Data science. dpunkt, Heidelberg Haneke U, Trahasch S, Zimmer M, Felden C (2018) Data science. dpunkt, Heidelberg
Zurück zum Zitat Hevner A, Chatterjee S (2010) Design research in information systems: theory and practice. Springer Science & Business Media, Berlin Hevner A, Chatterjee S (2010) Design research in information systems: theory and practice. Springer Science & Business Media, Berlin
Zurück zum Zitat Hocenski Ž, Matić T, Vidović I (2016) Technology transfer of computer vision defect detection to ceramic tiles industry. In: 2016 international conference on Smart Systems and Technologies (SST). IEEE, Osijek Hocenski Ž, Matić T, Vidović I (2016) Technology transfer of computer vision defect detection to ceramic tiles industry. In: 2016 international conference on Smart Systems and Technologies (SST). IEEE, Osijek
Zurück zum Zitat Jalalian A, Lu WF, Wong FS, Ahmed SM, Chew CM (2018) An automatic visual inspection method based on statistical approach for defect detection of ship hull surfaces. In: 2018 IEEE 14th international conference on Automation Science and Engineering (CASE). IEEE, Munich Jalalian A, Lu WF, Wong FS, Ahmed SM, Chew CM (2018) An automatic visual inspection method based on statistical approach for defect detection of ship hull surfaces. In: 2018 IEEE 14th international conference on Automation Science and Engineering (CASE). IEEE, Munich
Zurück zum Zitat Kadar M, Jardim-Gonçalves R, Covaciu C, Bullon S (2017) Intelligent defect management system for porcelain industry through cyber-physical systems. In: 2017 International Conference on Engineering, Technology and Innovation (ICE/ITMC). IEEE, Funchal Kadar M, Jardim-Gonçalves R, Covaciu C, Bullon S (2017) Intelligent defect management system for porcelain industry through cyber-physical systems. In: 2017 International Conference on Engineering, Technology and Innovation (ICE/ITMC). IEEE, Funchal
Zurück zum Zitat Klinkenberg R, Schlunder P, Klapic E, Lacker T (2018) Zukunftsweisende Informations-und Kommunikations-Technologien. In: Industrie 4.0 für die Praxis. Springer Gabler, Wiesbaden, S 129–146 CrossRef Klinkenberg R, Schlunder P, Klapic E, Lacker T (2018) Zukunftsweisende Informations-und Kommunikations-Technologien. In: Industrie 4.0 für die Praxis. Springer Gabler, Wiesbaden, S 129–146 CrossRef
Zurück zum Zitat Krizhevskky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional neural networks. In: International conference on neural information processing systems. Lake Tahoe, Nevada Krizhevskky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional neural networks. In: International conference on neural information processing systems. Lake Tahoe, Nevada
Zurück zum Zitat Kulkarni R, Kulkarni S, Dabhane S, Lele N, Paswan RS (2019) An automated computer vision based system for bottle cap fitting inspection. In: 2019 twelfth international conference on contemporary computing (IC3). IEEE, Noida Kulkarni R, Kulkarni S, Dabhane S, Lele N, Paswan RS (2019) An automated computer vision based system for bottle cap fitting inspection. In: 2019 twelfth international conference on contemporary computing (IC3). IEEE, Noida
Zurück zum Zitat Laucka A, Andriukaitis D, Markevicius V, Zilys M (2016) Research of the defects in PET preform. In: 2016 21st international conference on Methods and Models in Automation and Robotics (MMAR). IEEE, Miedzyzdroje Laucka A, Andriukaitis D, Markevicius V, Zilys M (2016) Research of the defects in PET preform. In: 2016 21st international conference on Methods and Models in Automation and Robotics (MMAR). IEEE, Miedzyzdroje
Zurück zum Zitat Liaw A, Wiener M (2002) Classification and regression by random forest. R News 3(4):18–22 Liaw A, Wiener M (2002) Classification and regression by random forest. R News 3(4):18–22
Zurück zum Zitat Luo Q, Fang X, Liu L, Yang C, Sun Y (2020) Automated visual defect detection for flat steel surface: a survey. In: IEEE transactions on instrumentation and measurement. Ottawa Luo Q, Fang X, Liu L, Yang C, Sun Y (2020) Automated visual defect detection for flat steel surface: a survey. In: IEEE transactions on instrumentation and measurement. Ottawa
Zurück zum Zitat Ma J (2017) Defect detection and recognition of bare PCB based on computer vision. In: 2017 36th Chinese Control Conference (CCC). IEEE, Dalian Ma J (2017) Defect detection and recognition of bare PCB based on computer vision. In: 2017 36th Chinese Control Conference (CCC). IEEE, Dalian
Zurück zum Zitat Ma Z, Gong J (2019) An automatic detection method of Mura defects for liquid crystal display. In: 2019 Chinese Control Conference (CCC). IEEE, Guangzhou, S 7722–7727 Ma Z, Gong J (2019) An automatic detection method of Mura defects for liquid crystal display. In: 2019 Chinese Control Conference (CCC). IEEE, Guangzhou, S 7722–7727
Zurück zum Zitat Nixon M, Aguado A (2019) Feature extraction and image processing for computer vision. Academic Press, Camebridge Nixon M, Aguado A (2019) Feature extraction and image processing for computer vision. Academic Press, Camebridge
Zurück zum Zitat Ouyang W, Xu B, Hou J, Yuan X (2019) Fabric defect detection using activation layer embedded convolutional neural network. IEEE Access 7:70130–70140 CrossRef Ouyang W, Xu B, Hou J, Yuan X (2019) Fabric defect detection using activation layer embedded convolutional neural network. IEEE Access 7:70130–70140 CrossRef
Zurück zum Zitat Parihar VR, Nage RS, Dahane AS (2017) Image analysis and image mining techniques: a review. J Image Process Artif Intell 3(2/3):1 Parihar VR, Nage RS, Dahane AS (2017) Image analysis and image mining techniques: a review. J Image Process Artif Intell 3(2/3):1
Zurück zum Zitat Pawar AC, Rokade PP, Nikam TT, Purane DA, Kulkarni KM (2019) Optimization of 3D printing process. Int Adv Res J Sci Eng Technol 6(3):5–8 CrossRef Pawar AC, Rokade PP, Nikam TT, Purane DA, Kulkarni KM (2019) Optimization of 3D printing process. Int Adv Res J Sci Eng Technol 6(3):5–8 CrossRef
Zurück zum Zitat Priese L (2015) Computer Vision – Einführung in die Verarbeitung und Analyse digitale Bilder. Springer Vieweg, Berling/Heidelberg Priese L (2015) Computer Vision – Einführung in die Verarbeitung und Analyse digitale Bilder. Springer Vieweg, Berling/Heidelberg
Zurück zum Zitat Raihan F, Ce W (2017) PCB defect detection USING OPENCV with image subtraction method. In: International conference on Information Management and Technology (ICIMTech). IEEE, Yogyakarta Raihan F, Ce W (2017) PCB defect detection USING OPENCV with image subtraction method. In: International conference on Information Management and Technology (ICIMTech). IEEE, Yogyakarta
Zurück zum Zitat Runkler TA (2013) Information Mining: Methoden, Algorithmen und Anwendungen intelligenter Datenanalyse. Springer, Berlin/Heidelberg MATH Runkler TA (2013) Information Mining: Methoden, Algorithmen und Anwendungen intelligenter Datenanalyse. Springer, Berlin/Heidelberg MATH
Zurück zum Zitat Sa J, Gong Y, Shi L, Xu J, Li H (2017) The determination of the circular boundary in quartz rods detection. In: 2017 4th International Conference on Systems and Informatics (ICSAI). IEEE, Hangzhou Sa J, Gong Y, Shi L, Xu J, Li H (2017) The determination of the circular boundary in quartz rods detection. In: 2017 4th International Conference on Systems and Informatics (ICSAI). IEEE, Hangzhou
Zurück zum Zitat Sakhare K, Kulkarni A, Kumbhakarn M, Kare N (2015). Spectral and spatial domain approach for fabric defect detection and classification. In: 2015 international conference on industrial instrumentation and control (ICIC). IEEE, Pune Sakhare K, Kulkarni A, Kumbhakarn M, Kare N (2015). Spectral and spatial domain approach for fabric defect detection and classification. In: 2015 international conference on industrial instrumentation and control (ICIC). IEEE, Pune
Zurück zum Zitat Sanghadiya F, Mistry D (2015) Surface defect detection in a tile using digital image processing: Analysis and evaluation. Int J Comput Appl 116(10) Sanghadiya F, Mistry D (2015) Surface defect detection in a tile using digital image processing: Analysis and evaluation. Int J Comput Appl 116(10)
Zurück zum Zitat Shukla VS, Vala JA (2016) Survey on image mining, its techniques and application. Int J Comput Appl 133(9):12–15 Shukla VS, Vala JA (2016) Survey on image mining, its techniques and application. Int J Comput Appl 133(9):12–15
Zurück zum Zitat Straub J (2015) Initial work on the characterization of additive manufacturing (3D printing) using software image analysis. Machines 3:55–71 CrossRef Straub J (2015) Initial work on the characterization of additive manufacturing (3D printing) using software image analysis. Machines 3:55–71 CrossRef
Zurück zum Zitat Syed K, Srinivasu SVN (2017) A review of web image mining tools, techniques and applications. Int J Comput Trends Technol (IJCTT) 49(1):36–43 CrossRef Syed K, Srinivasu SVN (2017) A review of web image mining tools, techniques and applications. Int J Comput Trends Technol (IJCTT) 49(1):36–43 CrossRef
Zurück zum Zitat Tan J, Li L, Wang Y, Mo F, Chen J, Zhao L, Xu Y (2016) The quality detection of surface defect in dispensing dack-end based on HALCON. In: 2016 international conference on Cybernetics, Robotics and Control (CRC). IEEE, Hong Kong Tan J, Li L, Wang Y, Mo F, Chen J, Zhao L, Xu Y (2016) The quality detection of surface defect in dispensing dack-end based on HALCON. In: 2016 international conference on Cybernetics, Robotics and Control (CRC). IEEE, Hong Kong
Zurück zum Zitat Tandiya A, Akthar S, Moussa M, Tarray C (2018) Automotive semi-specular surface defect detection system. In: 2018 15th conference on Computer and Robot Vision (CRV). IEEE, Toronto Tandiya A, Akthar S, Moussa M, Tarray C (2018) Automotive semi-specular surface defect detection system. In: 2018 15th conference on Computer and Robot Vision (CRV). IEEE, Toronto
Zurück zum Zitat Trakulwaranont D, Cooharojananone N, Kruachottikul P, Pitak P, Gongsri N, Aitphawin S (2019) Automobile cluster pointer defect detection system using adaptive intensity adjustment. In: 2019 IEEE 6th international conference on Industrial Engineering and Applications (ICIEA). IEEE, Tokyo Trakulwaranont D, Cooharojananone N, Kruachottikul P, Pitak P, Gongsri N, Aitphawin S (2019) Automobile cluster pointer defect detection system using adaptive intensity adjustment. In: 2019 IEEE 6th international conference on Industrial Engineering and Applications (ICIEA). IEEE, Tokyo
Zurück zum Zitat Trinks S (2018) A classification of real time analytics methods – an outlook for the use within the smart factory. Scientific papers of Silesian University of Technology, Organization and Management Series,Gliwice Trinks S (2018) A classification of real time analytics methods – an outlook for the use within the smart factory. Scientific papers of Silesian University of Technology, Organization and Management Series,Gliwice
Zurück zum Zitat Trinks S, Felden C (2017) Real time analytics – state of the art: potentials and limitations in the smart factory. In: IEEE international conference on big data. Boston, USA Trinks S, Felden C (2017) Real time analytics – state of the art: potentials and limitations in the smart factory. In: IEEE international conference on big data. Boston, USA
Zurück zum Zitat Trinks S, Felden C (2018) Edge computing architectures to support real time analytic applications – a state of the art within the application area of smart factory and industry 4.0. In: IEEE international conference on big data, Seattle, USA Trinks S, Felden C (2018) Edge computing architectures to support real time analytic applications – a state of the art within the application area of smart factory and industry 4.0. In: IEEE international conference on big data, Seattle, USA
Zurück zum Zitat Trinks S, Felden C (2019a) Image mining for real time quality assurance in rapid prototyping. In: 2019 IEEE international conference on big data (big data), Los Angeles, USA Trinks S, Felden C (2019a) Image mining for real time quality assurance in rapid prototyping. In: 2019 IEEE international conference on big data (big data), Los Angeles, USA
Zurück zum Zitat Trinks S, Felden C (2019b) Smart Factory – Konzeption und Prototyp zum Image Mining und zur Fehlererkennung in der Produktion. HMD 56:1017–1040 Trinks S, Felden C (2019b) Smart Factory – Konzeption und Prototyp zum Image Mining und zur Fehlererkennung in der Produktion. HMD 56:1017–1040
Zurück zum Zitat Tsay C, Li Z (2019) Automating visual inspection of lyophilized drug products with multi-input deep neural networks. In: 15th international conference on Automation Science and Engineering (CASE). IEEE, Vancouver Tsay C, Li Z (2019) Automating visual inspection of lyophilized drug products with multi-input deep neural networks. In: 15th international conference on Automation Science and Engineering (CASE). IEEE, Vancouver
Zurück zum Zitat Tulala P, Mahyar H, Ghalebi E, Grosu R (2018) Unsupervised wafermap patterns clustering via variational autoencoders. In: 2018 International Joint Conference on Neural Networks (IJCNN). IEEE, Rio de Janeiro Tulala P, Mahyar H, Ghalebi E, Grosu R (2018) Unsupervised wafermap patterns clustering via variational autoencoders. In: 2018 International Joint Conference on Neural Networks (IJCNN). IEEE, Rio de Janeiro
Zurück zum Zitat Wang H, Zhang J, Tian Y, Chen H, Sun H, Liu K (2018) A simple guidance template-based defect detection method for strip steel surfaces. IEEE Trans Indl Inf 15(5):2798–2809 CrossRef Wang H, Zhang J, Tian Y, Chen H, Sun H, Liu K (2018) A simple guidance template-based defect detection method for strip steel surfaces. IEEE Trans Indl Inf 15(5):2798–2809 CrossRef
Zurück zum Zitat Wang J, Hu H, Chen L, He C (2019) Assembly defect detection of atomizers based on machine vision. In: Proceedings of the 4th international conference on automation, control and robotics engineering. Shenzhen Wang J, Hu H, Chen L, He C (2019) Assembly defect detection of atomizers based on machine vision. In: Proceedings of the 4th international conference on automation, control and robotics engineering. Shenzhen
Zurück zum Zitat Wong KV, Hernandez A (2012) A review of additive manufacturing. ISRN Mech Eng 2012(4):10 Wong KV, Hernandez A (2012) A review of additive manufacturing. ISRN Mech Eng 2012(4):10
Zurück zum Zitat Xiaodong L, Weijie M, Wei J (2015) Image recognition for steel ball’s surface quality detecting based on kernel extreme learning machine. In: 2015 34th Chinese Control Conference (CCC). IEEE, Hangzhou Xiaodong L, Weijie M, Wei J (2015) Image recognition for steel ball’s surface quality detecting based on kernel extreme learning machine. In: 2015 34th Chinese Control Conference (CCC). IEEE, Hangzhou
Zurück zum Zitat Yan K, Dong Q, Sun T, Zhang M, Zhang S (2017) Weld defect detection based on completed local ternary patterns. In: Proceedings of the international conference on video and image processing. New York Yan K, Dong Q, Sun T, Zhang M, Zhang S (2017) Weld defect detection based on completed local ternary patterns. In: Proceedings of the international conference on video and image processing. New York
Zurück zum Zitat Zhou M, Wang G, Wang J, Hui C, Yang W (2017) Defect detection of printing images on cans based on SSIM and chromatism. In: 3rd IEEE International Conference on Computer and Communications (ICCC). IEEE, Chengdu, S 2127–2131 Zhou M, Wang G, Wang J, Hui C, Yang W (2017) Defect detection of printing images on cans based on SSIM and chromatism. In: 3rd IEEE International Conference on Computer and Communications (ICCC). IEEE, Chengdu, S 2127–2131
Metadaten
Titel
Automatisierte Qualitätssicherung via Image Mining und Computer Vision – Literaturrecherche und Prototyp
verfasst von
Sebastian Trinks
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-658-32236-6_7

Premium Partner