2007 | OriginalPaper | Buchkapitel
Averaging for ordinary differential equations and functional differential equations
verfasst von : Tewfik Sari
Erschienen in: The Strength of Nonstandard Analysis
Verlag: Springer Vienna
Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.
Wählen Sie Textabschnitte aus um mit Künstlicher Intelligenz passenden Patente zu finden. powered by
Markieren Sie Textabschnitte, um KI-gestützt weitere passende Inhalte zu finden. powered by (Link öffnet in neuem Fenster)
A nonstandard approach to averaging theory for ordinary differential equations and functional differential equations is developed. We define a notion of perturbation and we obtain averaging results under weaker conditions than the results in the literature. The classical averaging theorems approximate the solutions of the system by the solutions of the averaged system, for Lipschitz continuous vector fields, and when the solutions exist on the same interval as the solutions of the averaged system. We extend these results to perturbations of vector fields which are uniformly continuous in the spatial variable with respect to the time variable and without any restriction on the interval of existence of the solution.