Skip to main content
Erschienen in: Journal of Intelligent Information Systems 1/2019

26.10.2018

AWML: adaptive weighted margin learning for knowledge graph embedding

verfasst von: Chenchen Guo, Chunhong Zhang, Xiao Han, Yang Ji

Erschienen in: Journal of Intelligent Information Systems | Ausgabe 1/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Knowledge representation learning (KRL), exploited by various applications such as question answering and information retrieval, aims to embed the entities and relations contained by the knowledge graph into points of a vector space such that the semantic and structure information of the graph is well preserved in the representing space. However, the previous works mainly learned the embedding representations by treating each entity and relation equally which tends to ignore the inherent imbalance and heterogeneous properties existing in knowledge graph. By visualizing the representation results obtained from classic algorithm TransE in detail, we reveal the disadvantages caused by this homogeneous learning strategy and gain insight of designing policy for the homogeneous representation learning. In this paper, we propose a novel margin-based pairwise representation learning framework to be incorporated into many KRL approaches, with the method of introducing adaptivity according to the degree of knowledge heterogeneity. More specially, an adaptive margin appropriate to separate the real samples from fake samples in the embedding space is first proposed based on the sample’s distribution density, and then an adaptive weight is suggested to explicitly address the trade-off between the different contributions coming from the real and fake samples respectively. The experiments show that our Adaptive Weighted Margin Learning (AWML) framework can help the previous work achieve a better performance on real-world Knowledge Graphs Freebase and WordNet in the tasks of both link prediction and triplet classification.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
We compute hptr and tphr to classify the relations into 4 types: 1-to-1, 1-to-MANY, MANY-to-1 and MANY-to-MANY, following Bordes et al. (2013). If the average number hptr or tphr is below 1.5 then the argument is labeled as 1 and MANY otherwise.
 
2
The Knowledge Graph API lets us search Google Knowledge Graph for entities that match the constraints. This API is available at https://​developers.​google.​com/​knowledge-graph/​.
 
3
The X in CTransX can be replaced by E, R, etc., which refers to CTransE or CTransR respectively.
 
4
It is in a sense of average that the \(\boldsymbol {\hat {r}}\) should be close to the r and that the \(\boldsymbol {\hat {r}^{\prime }}\) should be further away from r. And for the synthetics \(\boldsymbol {\hat {r}^{\prime }}\), being further away from r is relative and is compared to the goldens \(\boldsymbol {\hat {r}}\).
 
5
We discover in our reproducing experiment that the original construction rule will make the KRL model perform poor in the classification task.
 
6
Source code and datasets for reproducing the experiments presented in this paper are available online: https://​github.​com/​orangegcc/​AWML/​
 
7
We only normalize the relation embedding in the first epoch. This is the same as the work of Bordes et al. (2013).
 
8
Note that our evaluation results of TransE, TransE(AdaGrad), TransR and CTransR, may be different from the original works. This is because the synthetic-triple replacement rule in the loss function (see (2)) differs a lot from each other. In our framework, the relation is considered additionally in the rule to make the KRL model appropriate also for triplet classification task not merely for the link prediction. What’s more, there exist some differences in the hyper-parameter settings between our framework and other works. We choose the best configuration of hyper-parameters in our experiments.
 
9
Different from the formal evaluation metric HITS@10, we add the other two HITS@n to investigate the sensitivity of the performance to the HITS size.
 
10
Note that, the models we compare contain CTransX(the baseline) and CTransX+AWL/AML, regardless of the original model TransX, including TransE, TransE(AG) and TransR. So all the evaluating results of TransX are not marked with bold font. Besides, to differentiate numerical values, we keep three decimal places for MeanRank_c of WN18 in the evaluation of Triplet Classification.
 
11
Please note here that, the results of Raw setting differ greatly from other papers, this is derived from our modified ranking approach mentioned in the Evaluation protocol. When obtaining the f score for the test triplet with each candidate entity, we use more than one sub-relations to calculate the neighborhood score and choose the best one as the final sub-relation. So the correct head/tail will rank higher than that in the former evaluate method.
 
12
We can discover from our evaluating results that “for CTransE model, AML is better than AWL for link prediction and AWL is better than AML for classification, but for some other models, it is contrary.” This is because Link Prediction tends to be performed well by those embeddings that satisfy the condition that the head h is close to the vector of tr, but Triplet Classification tends to be performed well by those embeddings that satisfy the condition that the relation r is being close to the vector of th. The thing worth mentioning is that in the sense of average, the above two conditions are not the sufficient and necessary between each other. Therefore, the performances on these two tasks are not absolutely the same. So for some KRL models, it can perform comparatively in one task but perform not so wonderfully in another.
 
13
In Fig. 7, some synthetic triplets indeed spread around the relation embedding r after the CTransE model incorporated with our AWL framework. However, this phenomenon does not violate our expectation of the representation distribution, because it is in a sense of average and in a relative sense that the implicit vector of synthetic triplet should be further away from the relation embedding vector compared with the implicit vector of golden triplet. In the process of KRL training, in order to guarantee the total loss is low enough, the model tends to make a little of synthetic triples contrary to the above statement.
 
Literatur
Zurück zum Zitat Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J. (2008). Freebase: a collaboratively created graph database for structuring human knowledge. In SIGMOD 08 Proceedings of the 2008 ACM SIGMOD international conference on management of data (pp. 1247–1250). Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J. (2008). Freebase: a collaboratively created graph database for structuring human knowledge. In SIGMOD 08 Proceedings of the 2008 ACM SIGMOD international conference on management of data (pp. 1247–1250).
Zurück zum Zitat Bordes, A., Glorot, X., Weston, J., Bengio, Y. (2012). Joint learning of words and meaning representations for open-text semantic parsing. International Conference on Artificial Intelligence & Statistics, 22, 127–135. Bordes, A., Glorot, X., Weston, J., Bengio, Y. (2012). Joint learning of words and meaning representations for open-text semantic parsing. International Conference on Artificial Intelligence & Statistics, 22, 127–135.
Zurück zum Zitat Bordes, A., Glorot, X., Weston, J., Bengio, Y. (2014). A semantic matching energy function for learning with multi-relational data: application to word-sense disambiguation. Machine Learning, 94(2), 233–259.MathSciNetCrossRefMATH Bordes, A., Glorot, X., Weston, J., Bengio, Y. (2014). A semantic matching energy function for learning with multi-relational data: application to word-sense disambiguation. Machine Learning, 94(2), 233–259.MathSciNetCrossRefMATH
Zurück zum Zitat Bordes, A., Usunier, N., Weston, J., Yakhnenko, O. (2013). Translating embeddings for modeling multi-relational data. Advances in NIPS, 26, 2787–2795. Bordes, A., Usunier, N., Weston, J., Yakhnenko, O. (2013). Translating embeddings for modeling multi-relational data. Advances in NIPS, 26, 2787–2795.
Zurück zum Zitat Bordes, A., Weston, J., Collobert, R., Bengio, Y. (2009). Learning structured embeddings of knowledge bases. Aaai Conference on Artificial Intelligence, (Bengio), 301–306. Bordes, A., Weston, J., Collobert, R., Bengio, Y. (2009). Learning structured embeddings of knowledge bases. Aaai Conference on Artificial Intelligence, (Bengio), 301–306.
Zurück zum Zitat Boser, B.E., Guyon, I.M., Vapnik, V.N. (1992). A training algorithm for optimal margin classifiers. In Proceedings of the fifth annual workshop on computational learning theory - COLT ’92 (pp. 144–152). Boser, B.E., Guyon, I.M., Vapnik, V.N. (1992). A training algorithm for optimal margin classifiers. In Proceedings of the fifth annual workshop on computational learning theory - COLT ’92 (pp. 144–152).
Zurück zum Zitat Duchi, J., Hazan, E., Singer, Y. (2011). Adaptive subgradient methods for online learning and stochastic optimization. The Journal of Machine Learning Research, 12(1532-4435), 2121–2159.MathSciNetMATH Duchi, J., Hazan, E., Singer, Y. (2011). Adaptive subgradient methods for online learning and stochastic optimization. The Journal of Machine Learning Research, 12(1532-4435), 2121–2159.MathSciNetMATH
Zurück zum Zitat Ferrȧndez, A., Matė, A., Peral, J., Trujillo, J., De Gregorio, E., Aufaure, M.A. (2016). A framework for enriching data warehouse analysis with question answering systems. Journal of Intelligent Information Systems, 46(1), 61–82.CrossRef Ferrȧndez, A., Matė, A., Peral, J., Trujillo, J., De Gregorio, E., Aufaure, M.A. (2016). A framework for enriching data warehouse analysis with question answering systems. Journal of Intelligent Information Systems, 46(1), 61–82.CrossRef
Zurück zum Zitat Han, X., Zhang, C., Guo, C. (2018). A generalization of recurrent neural networks for graph embedding. In Proceedings of the 22nd Pacific-Asia conference on knowledge discovery and data mining. Melbourne. Han, X., Zhang, C., Guo, C. (2018). A generalization of recurrent neural networks for graph embedding. In Proceedings of the 22nd Pacific-Asia conference on knowledge discovery and data mining. Melbourne.
Zurück zum Zitat He, S., Liu, K., Ji, G., Zhao, J. (2015). Learning to represent knowledge graphs with gaussian embedding. In Proceedings of the 24th ACM international on conference on information and knowledge management - CIKM ’15 (pp. 623–632). He, S., Liu, K., Ji, G., Zhao, J. (2015). Learning to represent knowledge graphs with gaussian embedding. In Proceedings of the 24th ACM international on conference on information and knowledge management - CIKM ’15 (pp. 623–632).
Zurück zum Zitat Jenatton, R., Bordes, A., Roux, N.L., Obozinski, G. (2012). A latent factor model for highly multi-relational data. Advances in Neural Information Processing Systems, 25, 3167–3175. Jenatton, R., Bordes, A., Roux, N.L., Obozinski, G. (2012). A latent factor model for highly multi-relational data. Advances in Neural Information Processing Systems, 25, 3167–3175.
Zurück zum Zitat Ji, G., He, S., Xu, L., Liu, K., Zhao, J. (2015). Knowledge graph embedding via dynamic mapping matrix. In Proceedings of the 53rd annual meeting of the association for computational linguistics and the 7th international joint conference on natural language processing (Volume 1: Long Papers, pp. 687–696). Ji, G., He, S., Xu, L., Liu, K., Zhao, J. (2015). Knowledge graph embedding via dynamic mapping matrix. In Proceedings of the 53rd annual meeting of the association for computational linguistics and the 7th international joint conference on natural language processing (Volume 1: Long Papers, pp. 687–696).
Zurück zum Zitat Lin, Y., Liu, Z., Luan, H., Sun, M., Rao, S., Liu, S. (2015a). Modeling relation paths for representation learning of knowledge bases. In Proceedings of the 2015 conference on empirical methods in natural language processing (pp. 705–714). Stroudsburg: Association for Computational Linguistics. Lin, Y., Liu, Z., Luan, H., Sun, M., Rao, S., Liu, S. (2015a). Modeling relation paths for representation learning of knowledge bases. In Proceedings of the 2015 conference on empirical methods in natural language processing (pp. 705–714). Stroudsburg: Association for Computational Linguistics.
Zurück zum Zitat Lin, Y., Liu, Z., Zhu, X., Zhu, X., Zhu, X. (2015b). Learning entity and relation embeddings for knowledge graph completion. In Twenty-Ninth AAAI conference on artificial intelligence (pp. 2181–2187). Lin, Y., Liu, Z., Zhu, X., Zhu, X., Zhu, X. (2015b). Learning entity and relation embeddings for knowledge graph completion. In Twenty-Ninth AAAI conference on artificial intelligence (pp. 2181–2187).
Zurück zum Zitat Maaten, L.V.D., & Hinton, G. (2008). Visualizing data using t-SNE. Journal of Machine Learning Research 1, 620(1), 267–284.MATH Maaten, L.V.D., & Hinton, G. (2008). Visualizing data using t-SNE. Journal of Machine Learning Research 1, 620(1), 267–284.MATH
Zurück zum Zitat Metzger, S., Schenkel, R., Sydow, M. (2017). QBEES: query-by-example entity search in semantic knowledge graphs based on maximal aspects, diversity-awareness and relaxation. Journal of Intelligent Information Systems, 49(3), 333–366.CrossRef Metzger, S., Schenkel, R., Sydow, M. (2017). QBEES: query-by-example entity search in semantic knowledge graphs based on maximal aspects, diversity-awareness and relaxation. Journal of Intelligent Information Systems, 49(3), 333–366.CrossRef
Zurück zum Zitat Mikolov, T., Chen, K., Corrado, G., Dean, J. (2013). Distributed representations of words and phrases and their compositionality. In NIPS, (pp. 1–9). Mikolov, T., Chen, K., Corrado, G., Dean, J. (2013). Distributed representations of words and phrases and their compositionality. In NIPS, (pp. 1–9).
Zurück zum Zitat Miller, G.A. (1995). WordNet: a lexical database for English. Communications of the ACM, 38(11), 39–41.CrossRef Miller, G.A. (1995). WordNet: a lexical database for English. Communications of the ACM, 38(11), 39–41.CrossRef
Zurück zum Zitat Minervini, P., D’Amato, C., Fanizzi, N. (2016). Efficient energy-based embedding models for link prediction in knowledge graphs. Journal of Intelligent Information Systems, 47(1), 91–109.CrossRef Minervini, P., D’Amato, C., Fanizzi, N. (2016). Efficient energy-based embedding models for link prediction in knowledge graphs. Journal of Intelligent Information Systems, 47(1), 91–109.CrossRef
Zurück zum Zitat Miyamoto, Y., & Cho, K. (2016). Gated word-character recurrent language model, 1992–1997. Miyamoto, Y., & Cho, K. (2016). Gated word-character recurrent language model, 1992–1997.
Zurück zum Zitat Nickel, M., & Ring, O. (2012). Factorizing YAGO scalable machine learning for linked data. In Proceedings of the 21st international conference on World Wide Web (pp. 271–280). Nickel, M., & Ring, O. (2012). Factorizing YAGO scalable machine learning for linked data. In Proceedings of the 21st international conference on World Wide Web (pp. 271–280).
Zurück zum Zitat Nickel, M., Tresp, V., Kriegel, H.-P. (2011). A three-way model for collective learning on multi-relational data. In ICML, (pp. 809–816). Nickel, M., Tresp, V., Kriegel, H.-P. (2011). A three-way model for collective learning on multi-relational data. In ICML, (pp. 809–816).
Zurück zum Zitat Nickel, M., Rosasco, L., Poggio, T. (2015). Holographic embeddings of knowledge graphs. In Thirtieth Aaai conference on artificial intelligence. Nickel, M., Rosasco, L., Poggio, T. (2015). Holographic embeddings of knowledge graphs. In Thirtieth Aaai conference on artificial intelligence.
Zurück zum Zitat Shi, B., & Weninger, T. (2017). ProjE: embedding projection for knowledge graph completion. In AAAI. Shi, B., & Weninger, T. (2017). ProjE: embedding projection for knowledge graph completion. In AAAI.
Zurück zum Zitat Socher, R., Chen, D., Manning, C., Chen, D., Ng, A. (2013). Reasoning with neural tensor networks for knowledge base completion. In Neural information processing systems 2003 (pp. 926-934). Socher, R., Chen, D., Manning, C., Chen, D., Ng, A. (2013). Reasoning with neural tensor networks for knowledge base completion. In Neural information processing systems 2003 (pp. 926-934).
Zurück zum Zitat Sutskever, I. (2009). Modelling relational data using Bayesian clustered tensor factorization. Nips, 22, 1–8. Sutskever, I. (2009). Modelling relational data using Bayesian clustered tensor factorization. Nips, 22, 1–8.
Zurück zum Zitat Wang, R., Cully, A., Chang, H.J., Demiris, Y. (2017). MAGAN: margin adaptation for generative adversarial networks. Wang, R., Cully, A., Chang, H.J., Demiris, Y. (2017). MAGAN: margin adaptation for generative adversarial networks.
Zurück zum Zitat Wang, Z., Zhang, J., Feng, J., Chen, Z. (2014). Knowledge graph embedding by translating on hyperplanes. In AAAI conference on artificial intelligence (pp. 1112–1119). Wang, Z., Zhang, J., Feng, J., Chen, Z. (2014). Knowledge graph embedding by translating on hyperplanes. In AAAI conference on artificial intelligence (pp. 1112–1119).
Zurück zum Zitat Weston, J., & Watkins, C. (1999). Support vector machines for multi-class pattern recognition. In Proceedings of the 7th European symposium on artificial neural networks (ESANN-99) (pp. 219–224). Weston, J., & Watkins, C. (1999). Support vector machines for multi-class pattern recognition. In Proceedings of the 7th European symposium on artificial neural networks (ESANN-99) (pp. 219–224).
Zurück zum Zitat Xiao, H., Huang, M., Hao, Y., Zhu, X. (2015). TransA: an adaptive approach for knowledge graph embedding. arXiv:1509.0. Xiao, H., Huang, M., Hao, Y., Zhu, X. (2015). TransA: an adaptive approach for knowledge graph embedding. arXiv:1509.​0.
Zurück zum Zitat Xiao, H., Huang, M., Yu, H., Zhu, X. (2016). TransG: a generative mixture model for knowledge graph embedding. In Proceedings of ACL (pp. 2316–2325). Xiao, H., Huang, M., Yu, H., Zhu, X. (2016). TransG: a generative mixture model for knowledge graph embedding. In Proceedings of ACL (pp. 2316–2325).
Zurück zum Zitat Xie, R., Liu, Z., Jia, J., Luan, H., Sun, M. (2016). Representation learning of knowledge graphs with entity descriptions. Aaai, 2659–2665. Xie, R., Liu, Z., Jia, J., Luan, H., Sun, M. (2016). Representation learning of knowledge graphs with entity descriptions. Aaai, 2659–2665.
Zurück zum Zitat Yang, Z., Dhingra, B., Yuan, Y., Hu, J., Cohen, W.W., Salakhutdinov, R. (2016). Words or characters? Fine-grained gating for reading comprehension. Yang, Z., Dhingra, B., Yuan, Y., Hu, J., Cohen, W.W., Salakhutdinov, R. (2016). Words or characters? Fine-grained gating for reading comprehension.
Zurück zum Zitat Zhang, C., Zhou, M., Han, X., Hu, Z., Ji, Y. (2017). Knowledge graph embedding for hyper-relational data. Tsinghua Science and Technology, 22(2), 185–197.CrossRef Zhang, C., Zhou, M., Han, X., Hu, Z., Ji, Y. (2017). Knowledge graph embedding for hyper-relational data. Tsinghua Science and Technology, 22(2), 185–197.CrossRef
Zurück zum Zitat Zhao, F., Min, M.R., Shen, C., Chakraborty, A. (2017). Convolutional neural knowledge graph learning. arXiv:1710.0. Zhao, F., Min, M.R., Shen, C., Chakraborty, A. (2017). Convolutional neural knowledge graph learning. arXiv:1710.​0.
Zurück zum Zitat Zhou, M., Zhang, C., Han, X., Ji, Y., Hu, Z., Qiu, X. (2016). Knowledge graph completion for hyper-relational data. In Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics) (Vol. 9784, pp. 236–246). Zhou, M., Zhang, C., Han, X., Ji, Y., Hu, Z., Qiu, X. (2016). Knowledge graph completion for hyper-relational data. In Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics) (Vol. 9784, pp. 236–246).
Metadaten
Titel
AWML: adaptive weighted margin learning for knowledge graph embedding
verfasst von
Chenchen Guo
Chunhong Zhang
Xiao Han
Yang Ji
Publikationsdatum
26.10.2018
Verlag
Springer US
Erschienen in
Journal of Intelligent Information Systems / Ausgabe 1/2019
Print ISSN: 0925-9902
Elektronische ISSN: 1573-7675
DOI
https://doi.org/10.1007/s10844-018-0535-2

Weitere Artikel der Ausgabe 1/2019

Journal of Intelligent Information Systems 1/2019 Zur Ausgabe