Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

06.07.2016 | Original Article | Ausgabe 6/2017

International Journal of Machine Learning and Cybernetics 6/2017

Background subtraction based on modified online robust principal component analysis

Zeitschrift:
International Journal of Machine Learning and Cybernetics > Ausgabe 6/2017
Autoren:
Guang Han, Jinkuan Wang, Xi Cai

Abstract

In video surveillance, camera jitter occurs frequently and poses a great challenge to foreground detection. To overcome this challenge without any additional anti-jitter preprocessing, we propose a background subtraction method based on modified online robust principal component analysis (ORPCA). We modify the original ORPCA algorithm by introducing a prior-information-based adaptive weighting parameter to make our method adapt to variation of sparsity of foreground objects among frames, which can substantially improve the accuracy of foreground detection. In detail, we utilize sparsity of our foreground detection result of the last frame as the prior information, and adaptively adjust the weighting parameter of the sparse term for the current frame. Moreover, to make the modified ORPCA applicable to foreground detection, we also reduce the dimension of input frames through representing unoverlapped blocks by their median values. Different from recent advanced methods that rely on pixel-based background models, our method utilizes the low-dimensional subspace constructed by backgrounds of previous frames to estimate background of a new input frame, and hence can well handle the camera jitter. Experimental results demonstrate that, our method achieves remarkable results and outperforms several advanced methods in coping with the camera jitter.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 6/2017

International Journal of Machine Learning and Cybernetics 6/2017 Zur Ausgabe