Skip to main content
Erschienen in:
Buchtitelbild

2017 | OriginalPaper | Buchkapitel

1. Background

verfasst von : Vandana Rana, Diwakar Rana

Erschienen in: Renewable Biofuels

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Woody biomasses such as loblolly pine (Pinus taeda) could potentially be an excellent feedstock for the production of biofuels due to their widespread availability in the United States (Smith et al. 2002). However, woody biomass suffers from difficulty in pretreatment to obtain concentrated sugar solutions at sufficient yields (Stenberg et al. 1998; Söderström et al. 2003; Zhu et al. 2009). Higher lignin content (Söderström et al. 2003) and cellulose crystallinity (Bansal et al. 2010) in woody biomasses have been recognized as two major barriers in accessing the sugars after pretreatment. Various studies on different types of pretreatment also showed that the lignin undergoes changes during pretreatment including depolymerization and re-condensation and comes out from the process in more condensed form than native lignin (Funaoka et al. 1990; Trajano et al. 2013). The lignin condensation requires that this lignin be used only for the combined heat and power application (Sannigrahi et al. 2009).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Ahring, B. K., Jensen, K., Nielsen, P., Bjerre, A. B., & Schmidt, A. S. (1996). Pretreatment of wheat straw and conversion of xylose and xylan to ethanol by thermophilic anaerobic bacteria. Bioresource Technology, 58(2), 107–113. doi:10.1016/s0960-8524(96)00090-9.CrossRef Ahring, B. K., Jensen, K., Nielsen, P., Bjerre, A. B., & Schmidt, A. S. (1996). Pretreatment of wheat straw and conversion of xylose and xylan to ethanol by thermophilic anaerobic bacteria. Bioresource Technology, 58(2), 107–113. doi:10.​1016/​s0960-8524(96)00090-9.CrossRef
Zurück zum Zitat Ahring, B. K., & Thomsen, A. B. (2003). Method for processing lignocellulosic material. U.S. Patent 6,555,350 B2 April 29, 2003. Ahring, B. K., & Thomsen, A. B. (2003). Method for processing lignocellulosic material. U.S. Patent 6,555,350 B2 April 29, 2003.
Zurück zum Zitat Ahring, B., & Westermann, P. (2007). Coproduction of bioethanol with other biofuels. In L. Olsson (Ed.), Biofuels (Vol. 108, pp. 289–302). Berlin/Heidelberg: Springer.CrossRef Ahring, B., & Westermann, P. (2007). Coproduction of bioethanol with other biofuels. In L. Olsson (Ed.), Biofuels (Vol. 108, pp. 289–302). Berlin/Heidelberg: Springer.CrossRef
Zurück zum Zitat Allen, N. S. (1983). Degradation and stabilization of polyolefins. London/New York: Applied Science Publishers Ltd. Allen, N. S. (1983). Degradation and stabilization of polyolefins. London/New York: Applied Science Publishers Ltd.
Zurück zum Zitat Bansal, P., Hall, M., Realff, M. J., Lee, J. H., & Bommarius, A. S. (2010). Multivariate statistical analysis of X-ray data from cellulose: A new method to determine degree of crystallinity and predict hydrolysis rates. Bioresource Technology, 101(12), 4461–4471. doi:10.1016/j.biortech.2010.01.068.CrossRef Bansal, P., Hall, M., Realff, M. J., Lee, J. H., & Bommarius, A. S. (2010). Multivariate statistical analysis of X-ray data from cellulose: A new method to determine degree of crystallinity and predict hydrolysis rates. Bioresource Technology, 101(12), 4461–4471. doi:10.​1016/​j.​biortech.​2010.​01.​068.CrossRef
Zurück zum Zitat Bu, L., Xing, Y., Yu, H., Gao, Y., & Jiang, J. (2012). Comparative study of sulfite pretreatments for robust enzymatic saccharification of corn cob residue. Biotechnology for Biofuels, 5(1), 87.CrossRef Bu, L., Xing, Y., Yu, H., Gao, Y., & Jiang, J. (2012). Comparative study of sulfite pretreatments for robust enzymatic saccharification of corn cob residue. Biotechnology for Biofuels, 5(1), 87.CrossRef
Zurück zum Zitat Capanema, E. A., Balakshin, M. Y., & Kadla, J. F. (2004). A comprehensive approach for quantitative lignin characterization by NMR spectroscopy. Journal of Agricultural and Food Chemistry, 52(7), 1850–1860. doi:10.1021/jf035282b.CrossRef Capanema, E. A., Balakshin, M. Y., & Kadla, J. F. (2004). A comprehensive approach for quantitative lignin characterization by NMR spectroscopy. Journal of Agricultural and Food Chemistry, 52(7), 1850–1860. doi:10.​1021/​jf035282b.CrossRef
Zurück zum Zitat Cheng, K., Wang, W., Zhang, J., Zhao, Q., Li, J., & Xue, J. (2011). Statistical optimization of sulfite pretreatment of corncob residues for high concentration ethanol production. Bioresource Technology, 102, 3014–3019.CrossRef Cheng, K., Wang, W., Zhang, J., Zhao, Q., Li, J., & Xue, J. (2011). Statistical optimization of sulfite pretreatment of corncob residues for high concentration ethanol production. Bioresource Technology, 102, 3014–3019.CrossRef
Zurück zum Zitat Donohoe, B. S., Decker, S. R., Tucker, M. P., Himmel, M. E., & Vinzant, T. B. (2008). Visualizing lignin coalescence and migration through maize cell walls following thermochemical pretreatment. Biotechnology and Bioengineering, 101, 913–925.CrossRef Donohoe, B. S., Decker, S. R., Tucker, M. P., Himmel, M. E., & Vinzant, T. B. (2008). Visualizing lignin coalescence and migration through maize cell walls following thermochemical pretreatment. Biotechnology and Bioengineering, 101, 913–925.CrossRef
Zurück zum Zitat Eriksson, T., Borjesson, J., & Tjerneld, F. (2002). Mechanism of surfactant effect in enzymatic hydrolysis of lignocellulose. Enzyme and Microbial Technology, 31, 353–364.CrossRef Eriksson, T., Borjesson, J., & Tjerneld, F. (2002). Mechanism of surfactant effect in enzymatic hydrolysis of lignocellulose. Enzyme and Microbial Technology, 31, 353–364.CrossRef
Zurück zum Zitat Holladay, J. E., White, J. F., Bozell, J. J., & Johnson, D. (2007). Top value-added chemicals from biomass - Volume II—Results of screening for potential candidates from biorefinery lignin. Richland, WA: Pacific Northwest National Laboratory. PNNL-16983.CrossRef Holladay, J. E., White, J. F., Bozell, J. J., & Johnson, D. (2007). Top value-added chemicals from biomass - Volume II—Results of screening for potential candidates from biorefinery lignin. Richland, WA: Pacific Northwest National Laboratory. PNNL-16983.CrossRef
Zurück zum Zitat Kassim, E., & El-Shahed, A. (1986). Enzymatic and chemical hydrolysis of certain cellulosic materials. Agricultural Wastes, 17, 229–233.CrossRef Kassim, E., & El-Shahed, A. (1986). Enzymatic and chemical hydrolysis of certain cellulosic materials. Agricultural Wastes, 17, 229–233.CrossRef
Zurück zum Zitat Kumar, P., Barrett, D. M., Delwiche, M. J., & Stroeve, P. (2009). Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Industrial & Engineering Chemistry Research, 48(8), 3713–3729. doi:10.1021/ie801542g.CrossRef Kumar, P., Barrett, D. M., Delwiche, M. J., & Stroeve, P. (2009). Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Industrial & Engineering Chemistry Research, 48(8), 3713–3729. doi:10.​1021/​ie801542g.CrossRef
Zurück zum Zitat Larsson, P. T., Westermark, U., & Iversen, T. (1995). Determination of the cellulose Iα allomorph content in a tunicate cellulose by CP/MAS 13C-NMR spectroscopy. Carbohydrate Research, 278(2), 339–343. doi:10.1016/0008-6215(95)00248-0.CrossRef Larsson, P. T., Westermark, U., & Iversen, T. (1995). Determination of the cellulose Iα allomorph content in a tunicate cellulose by CP/MAS 13C-NMR spectroscopy. Carbohydrate Research, 278(2), 339–343. doi:10.​1016/​0008-6215(95)00248-0.CrossRef
Zurück zum Zitat Laurence, B. D. (1998). Lignin and lignan biosynthesis, copyright, advisory board, foreword. In N. G. Lewis & S. Sarkanen (Eds.), Lignin and lignan biosynthesis (Vol. 697, pp. 334–361). New Orleans, LA: American Chemical Society.CrossRef Laurence, B. D. (1998). Lignin and lignan biosynthesis, copyright, advisory board, foreword. In N. G. Lewis & S. Sarkanen (Eds.), Lignin and lignan biosynthesis (Vol. 697, pp. 334–361). New Orleans, LA: American Chemical Society.CrossRef
Zurück zum Zitat Martínez, J. M., Reguant, J., Montero, M. A., Montané, D., Salvadó, J., & Farriol, X. (1997). Hydrolytic pretreatment of softwood and almond shells. Degree of polymerization and enzymatic digestibility of the cellulose fraction. Industrial & Engineering Chemistry Research, 36(3), 688–696. doi:10.1021/ie960048e.CrossRef Martínez, J. M., Reguant, J., Montero, M. A., Montané, D., Salvadó, J., & Farriol, X. (1997). Hydrolytic pretreatment of softwood and almond shells. Degree of polymerization and enzymatic digestibility of the cellulose fraction. Industrial & Engineering Chemistry Research, 36(3), 688–696. doi:10.​1021/​ie960048e.CrossRef
Zurück zum Zitat Mendonca, R., Ferraz, A., Kordsachia, O., & Patt, R. (2004). Alkaline sulfite/anthraquinone pulping of pine wood chips biotreated with Ceriporiopsis subvermispora. Journal of Chemical Technology and Biotechnology, 79, 584–589.CrossRef Mendonca, R., Ferraz, A., Kordsachia, O., & Patt, R. (2004). Alkaline sulfite/anthraquinone pulping of pine wood chips biotreated with Ceriporiopsis subvermispora. Journal of Chemical Technology and Biotechnology, 79, 584–589.CrossRef
Zurück zum Zitat Mikhail, L., & Adriaan, V. (2012). Efficient fractionation of spruce by SO2-ethanol-water treatment: closed mass balances for carbohydrates and sulfur. ChemSusChem, 5, 1625–1637.CrossRef Mikhail, L., & Adriaan, V. (2012). Efficient fractionation of spruce by SO2-ethanol-water treatment: closed mass balances for carbohydrates and sulfur. ChemSusChem, 5, 1625–1637.CrossRef
Zurück zum Zitat Munter, R. (2001). Advanced oxidation processes—Current status and prospects. Proceedings of the Estonian Academy of Sciences, Chemistry, 50(2), 59–80. Munter, R. (2001). Advanced oxidation processes—Current status and prospects. Proceedings of the Estonian Academy of Sciences, Chemistry, 50(2), 59–80.
Zurück zum Zitat Pan, X., Gilkes, N., Kadla, J., Pye, K., Saka, S., Gregg, D., et al. (2006). Bioconversion of hybrid poplar to ethanol and co-products using an organosolv fractionation process: Optimization of process yields. Biotechnology and Bioengineering, 94(5), 851–861. doi:10.1002/bit.20905.CrossRef Pan, X., Gilkes, N., Kadla, J., Pye, K., Saka, S., Gregg, D., et al. (2006). Bioconversion of hybrid poplar to ethanol and co-products using an organosolv fractionation process: Optimization of process yields. Biotechnology and Bioengineering, 94(5), 851–861. doi:10.​1002/​bit.​20905.CrossRef
Zurück zum Zitat Pandey, A. (2009). Handbook of plant-based biofuels. Florida: CRC Press. Pandey, A. (2009). Handbook of plant-based biofuels. Florida: CRC Press.
Zurück zum Zitat Rana, D., Laskar, D. D., Srinivas, K., & Ahring, B. K. (2015). Wet explosion pretreatment of softwood changes the lignin structure resulting in an increase in methoxylated lignin species. Bioresources and Bioprocessing, 2, 26.CrossRef Rana, D., Laskar, D. D., Srinivas, K., & Ahring, B. K. (2015). Wet explosion pretreatment of softwood changes the lignin structure resulting in an increase in methoxylated lignin species. Bioresources and Bioprocessing, 2, 26.CrossRef
Zurück zum Zitat Saddler, J. N., Ramos, L. P., & Breuil, C. (1993). Steam pretreatment of lignocellulosic residues. In J. N. Saddler (Ed.), Bioconversion of forest and agricultural plant residues (pp. 73–92). Oxford, UK: CAB International. Saddler, J. N., Ramos, L. P., & Breuil, C. (1993). Steam pretreatment of lignocellulosic residues. In J. N. Saddler (Ed.), Bioconversion of forest and agricultural plant residues (pp. 73–92). Oxford, UK: CAB International.
Zurück zum Zitat Samuel, R., Cao, S., Das, B. K., Hu, F., Pu, Y., & Ragauskas, A. J. (2013). Investigation of the fate of poplar lignin during autohydrolysis pretreatment to understand the biomass recalcitrance. RSC Advances, 3(16), 5305–5309. doi:10.1039/c3ra40578h.CrossRef Samuel, R., Cao, S., Das, B. K., Hu, F., Pu, Y., & Ragauskas, A. J. (2013). Investigation of the fate of poplar lignin during autohydrolysis pretreatment to understand the biomass recalcitrance. RSC Advances, 3(16), 5305–5309. doi:10.​1039/​c3ra40578h.CrossRef
Zurück zum Zitat Sannigrahi, P., Kim, D. H., Jung, S., & Ragauskas, A. (2011). Pseudo-lignin and pretreatment chemistry. Energy & Environmental Science, 4(4), 1306–1310. doi:10.1039/c0ee00378f.CrossRef Sannigrahi, P., Kim, D. H., Jung, S., & Ragauskas, A. (2011). Pseudo-lignin and pretreatment chemistry. Energy & Environmental Science, 4(4), 1306–1310. doi:10.​1039/​c0ee00378f.CrossRef
Zurück zum Zitat Sannigrahi, P., Miller, S. J., & Ragauskas, A. J. (2010). Effects of organosolv pretreatment and enzymatic hydrolysis on cellulose structure and crystallinity in Loblolly pine. Carbohydrate Research, 345(7), 965–970. doi:10.1016/j.carres.2010.02.010.CrossRef Sannigrahi, P., Miller, S. J., & Ragauskas, A. J. (2010). Effects of organosolv pretreatment and enzymatic hydrolysis on cellulose structure and crystallinity in Loblolly pine. Carbohydrate Research, 345(7), 965–970. doi:10.​1016/​j.​carres.​2010.​02.​010.CrossRef
Zurück zum Zitat Sannigrahi, P., Ragauskas, A. J., & Miller, S. J. (2009). Lignin structural modifications resulting from ethanol organosolv treatment of loblolly pine. Energy & Fuels, 24(1), 683–689. doi:10.1021/ef900845t.CrossRef Sannigrahi, P., Ragauskas, A. J., & Miller, S. J. (2009). Lignin structural modifications resulting from ethanol organosolv treatment of loblolly pine. Energy & Fuels, 24(1), 683–689. doi:10.​1021/​ef900845t.CrossRef
Zurück zum Zitat Scott, G. (1993). Atmospheric oxidation and antioxidants (Vol. 1). Amsterdam: Elsevier Publishing Company. Scott, G. (1993). Atmospheric oxidation and antioxidants (Vol. 1). Amsterdam: Elsevier Publishing Company.
Zurück zum Zitat Shuai, L., Yang, Q., Zhu, J., Lu, F., Weimer, P., Palph, J., et al. (2010). Comparative study of SPORL and dilute-acid pretreatments of spruce for cellulosic ethanol production. Bioresource Technology, 101, 3106–3114.CrossRef Shuai, L., Yang, Q., Zhu, J., Lu, F., Weimer, P., Palph, J., et al. (2010). Comparative study of SPORL and dilute-acid pretreatments of spruce for cellulosic ethanol production. Bioresource Technology, 101, 3106–3114.CrossRef
Zurück zum Zitat Sjostrom, E. (1993). Wood chemistry: Fundamentals and applications (2nd ed.). San Diego, CA: Academic. Sjostrom, E. (1993). Wood chemistry: Fundamentals and applications (2nd ed.). San Diego, CA: Academic.
Zurück zum Zitat Sjöström, E. (1999). Wood chemistry (2nd ed.). New York: Academic Press. Sjöström, E. (1999). Wood chemistry (2nd ed.). New York: Academic Press.
Zurück zum Zitat Smith, W. B., Miles, P. D., Vissage, J. S., & Pugh, S. A. (2002). Forest resources of the United States, (F. Service, Trans.). U.S. Department of Agriculture. Smith, W. B., Miles, P. D., Vissage, J. S., & Pugh, S. A. (2002). Forest resources of the United States, (F. Service, Trans.). U.S. Department of Agriculture.
Zurück zum Zitat Söderström, J., Pilcher, L., Galbe, M., & Zacchi, G. (2003). Two-step steam pretreatment of softwood by dilute H2SO4 impregnation for ethanol production. Biomass and Bioenergy, 24(6), 475–486. doi:10.1016/s0961-9534(02)00148-4.CrossRef Söderström, J., Pilcher, L., Galbe, M., & Zacchi, G. (2003). Two-step steam pretreatment of softwood by dilute H2SO4 impregnation for ethanol production. Biomass and Bioenergy, 24(6), 475–486. doi:10.​1016/​s0961-9534(02)00148-4.CrossRef
Zurück zum Zitat Trajano, H., Engle, N., Foston, M., Ragauskas, A., Tschaplinski, T., & Wyman, C. (2013). The fate of lignin during hydrothermal pretreatment. Biotechnology for Biofuels, 6(1), 110.CrossRef Trajano, H., Engle, N., Foston, M., Ragauskas, A., Tschaplinski, T., & Wyman, C. (2013). The fate of lignin during hydrothermal pretreatment. Biotechnology for Biofuels, 6(1), 110.CrossRef
Zurück zum Zitat Vares, T., Lundell, T. K., & Hatakka, A. I. (1993). Production of multiple lignin peroxidases by the white-rot fungus Phlebia ochraceofulva. Enzyme and Microbial Technology, 15(8), 664–669. doi:10.1016/0141-0229(93)90066-B.CrossRef Vares, T., Lundell, T. K., & Hatakka, A. I. (1993). Production of multiple lignin peroxidases by the white-rot fungus Phlebia ochraceofulva. Enzyme and Microbial Technology, 15(8), 664–669. doi:10.​1016/​0141-0229(93)90066-B.CrossRef
Zurück zum Zitat Wienhaus, O. M. L., & Goldstein, J. S. (1992). Wood structure and composition. 512 S., 164 Abb., 32 Tab., Marcel Dekker Inc., New York 1991. (International Fiber Science and Technology). Hardcover, $ 189,75. Journal für Praktische Chemie/Chemiker-Zeitung, 334(8), 729. doi:10.1002/prac.19923340821.CrossRef Wienhaus, O. M. L., & Goldstein, J. S. (1992). Wood structure and composition. 512 S., 164 Abb., 32 Tab., Marcel Dekker Inc., New York 1991. (International Fiber Science and Technology). Hardcover, $ 189,75. Journal für Praktische Chemie/Chemiker-Zeitung, 334(8), 729. doi:10.​1002/​prac.​19923340821.CrossRef
Zurück zum Zitat Xia, Z., Akim, L. G., & Argyropoulos, D. S. (2001). Quantitative 13C NMR analysis of lignins with internal standards. Journal of Agricultural and Food Chemistry, 49(8), 3573–3578. doi:10.1021/jf010333v.CrossRef Xia, Z., Akim, L. G., & Argyropoulos, D. S. (2001). Quantitative 13C NMR analysis of lignins with internal standards. Journal of Agricultural and Food Chemistry, 49(8), 3573–3578. doi:10.​1021/​jf010333v.CrossRef
Zurück zum Zitat Yang, B., & Wyman, C. E. (2006). BSA treatment to enhance enzymatic hydrolysis of cellulose in lignin containing substrates. Biotechnology and Bioengineering, 94, 611–617.CrossRef Yang, B., & Wyman, C. E. (2006). BSA treatment to enhance enzymatic hydrolysis of cellulose in lignin containing substrates. Biotechnology and Bioengineering, 94, 611–617.CrossRef
Zurück zum Zitat Yang, B., & Wyman, C. E. (2008). Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels, Bioproducts and Biorefining, 2(1), 26–40. doi:10.1002/bbb.49.CrossRef Yang, B., & Wyman, C. E. (2008). Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels, Bioproducts and Biorefining, 2(1), 26–40. doi:10.​1002/​bbb.​49.CrossRef
Zurück zum Zitat Zheng, Y., Pan, Z., & Zhang, R. (2009). Overview of biomass pretreatment for cellulosic ethanol production. International Journal of Agricultural and Biological Engineering, 2, 51. Zheng, Y., Pan, Z., & Zhang, R. (2009). Overview of biomass pretreatment for cellulosic ethanol production. International Journal of Agricultural and Biological Engineering, 2, 51.
Metadaten
Titel
Background
verfasst von
Vandana Rana
Diwakar Rana
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-47379-6_1