Skip to main content

2011 | OriginalPaper | Buchkapitel

12. Bacterial Biosorption: A Technique for Remediation of Heavy Metals

verfasst von : Mohd Ikram Ansari, Farhana Masood, Abdul Malik

Erschienen in: Microbes and Microbial Technology

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Bacterial biosorption can be used for the removal of pollutants from waters contaminated with pollutants that are not easily biodegradable, such as metals and dyes. A variety of biomaterials are known to bind these pollutants including bacteria, fungi, algae, and certain industrial and agricultural wastes. Biosorbents are less costly and more effective alternatives for the removal of metallic elements, especially heavy metals, from aqueous solution. In this chapter, the sorption abilities of bacterial biomass toward metal ions are emphasized. The appropriate conditions for immobilizing bacteria for maximum biosorption and the mechanism(s) involved are highlighted. The properties of cell wall constituents, such as peptidoglycan, and the role of functional groups, such as carboxyl, amine, and phosphonate, are discussed on the basis of their biosorption potentials. Binding mechanisms as well as the parameters influencing passive uptake of pollutants are analyzed. A detailed description of isotherm and kinetic models and the importance of mechanistic modeling are presented. To enhance biosorption capacity, biomass modifications through chemical methods and genetic engineering are needed for the effective removal of metal. For continuous treatment of effluents, a packed column configuration is suggested and the factors influencing its performance are discussed. The chapter also highlights the necessity for examination of biosorbents within real-world situations, as competition between solutes and water quality may affect biosorption performance. Thus, this chapter reviews the achievements and current status of biosorption technology and provides insights into this research frontier.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Agarwal, G. S., Bhuptawat, H. K., and Chaudhari, S. 2006. Biosorption of aqueous chromium(VI) by Tamarindus indica seeds. Bioresour. Technol. 97:949–956.CrossRef Agarwal, G. S., Bhuptawat, H. K., and Chaudhari, S. 2006. Biosorption of aqueous chromium(VI) by Tamarindus indica seeds. Bioresour. Technol. 97:949–956.CrossRef
Zurück zum Zitat Akar, T., Tunali, S., and Kiran, I. 2005. Botrytis cinerea as a new fungal biosorbent for removal of Pb(II) from aqueous solutions. Biochem. Eng. J. 25:227–235.CrossRef Akar, T., Tunali, S., and Kiran, I. 2005. Botrytis cinerea as a new fungal biosorbent for removal of Pb(II) from aqueous solutions. Biochem. Eng. J. 25:227–235.CrossRef
Zurück zum Zitat Akar, T., Kaynak, Z., Ulusoy, S., Yuvaci, D., Ozsari, G., and Akar S. T. 2009. Enhanced biosorption of nickel(II) ions by silica-gel-immobilized waste biomass: biosorption characteristics in batch and dynamic flow mode. J. Hazard. Mater. 163:1134–1141.CrossRef Akar, T., Kaynak, Z., Ulusoy, S., Yuvaci, D., Ozsari, G., and Akar S. T. 2009. Enhanced biosorption of nickel(II) ions by silica-gel-immobilized waste biomass: biosorption characteristics in batch and dynamic flow mode. J. Hazard. Mater. 163:1134–1141.CrossRef
Zurück zum Zitat Aksu, Z. 2005. Application of biosorption for the removal of organic pollutants: a review. Process Biochem. 40:997–1026.CrossRef Aksu, Z. 2005. Application of biosorption for the removal of organic pollutants: a review. Process Biochem. 40:997–1026.CrossRef
Zurück zum Zitat Aksu, Z., and Gönen, F. 2004. Biosorption of phenol by immobilized activated sludge in a continuous packed bed: prediction of breakthrough curves. Process Biochem. 39:599–613.CrossRef Aksu, Z., and Gönen, F. 2004. Biosorption of phenol by immobilized activated sludge in a continuous packed bed: prediction of breakthrough curves. Process Biochem. 39:599–613.CrossRef
Zurück zum Zitat Aksu, Z., Acikel, U., Kabasakal, E., and Tezer, S. 2002. Equilibrium modelling of individual and simultaneous biosorption of chromium(VI) and nickel(II) onto dried activated sludge. Water Res. 36:3063–3073.CrossRef Aksu, Z., Acikel, U., Kabasakal, E., and Tezer, S. 2002. Equilibrium modelling of individual and simultaneous biosorption of chromium(VI) and nickel(II) onto dried activated sludge. Water Res. 36:3063–3073.CrossRef
Zurück zum Zitat Al-Rub, F. A. A. 2006. Biosorption of zinc on palm tree leaves: equilibrium, kinetics, and thermodynamics studies. Sep. Sci. Technol. 41:3499–3515.CrossRef Al-Rub, F. A. A. 2006. Biosorption of zinc on palm tree leaves: equilibrium, kinetics, and thermodynamics studies. Sep. Sci. Technol. 41:3499–3515.CrossRef
Zurück zum Zitat Amarasinghe, B. M. W. P. K., and Williams, R. A. 2007. Tea waste as a low cost adsorbent for the removal of Cu and Pb from wastewater. Chem. Eng. J. 132:299–309.CrossRef Amarasinghe, B. M. W. P. K., and Williams, R. A. 2007. Tea waste as a low cost adsorbent for the removal of Cu and Pb from wastewater. Chem. Eng. J. 132:299–309.CrossRef
Zurück zum Zitat Antizar-Ladislao, A., and Galil, N. I. (2004). Biosorption of phenol and chlorophenols by acclimated residential biomass under bioremediation conditions in a sandy aquifer. Water. Res. 38:267–276.CrossRef Antizar-Ladislao, A., and Galil, N. I. (2004). Biosorption of phenol and chlorophenols by acclimated residential biomass under bioremediation conditions in a sandy aquifer. Water. Res. 38:267–276.CrossRef
Zurück zum Zitat Apiratikul, R., and Pavasant, P. 2008. Batch and column studies of biosorption of heavy metals by Caulerpa lentillifera. Bioresour. Technol. 99:2766–2777.CrossRef Apiratikul, R., and Pavasant, P. 2008. Batch and column studies of biosorption of heavy metals by Caulerpa lentillifera. Bioresour. Technol. 99:2766–2777.CrossRef
Zurück zum Zitat Arica, M. A., Kacar, Y., and Genc, O. 2001. Entrapment of white-rot fungus Trametes versicolor in Ca-alginate beads: preparation and biosorption kinetic analysis for cadmium removal from an aqueous solution. Bioresour. Technol. 80:121–129.CrossRef Arica, M. A., Kacar, Y., and Genc, O. 2001. Entrapment of white-rot fungus Trametes versicolor in Ca-alginate beads: preparation and biosorption kinetic analysis for cadmium removal from an aqueous solution. Bioresour. Technol. 80:121–129.CrossRef
Zurück zum Zitat Arica, M. A., Bayremoglu, G., Yilmaz, M., Bektas, S., and Genc, O. 2004. Biosorption of Hg2+, Cd2+ and Zn2+ by Ca-alginate and immobilized wood-rotting fungus Funalia trogii. J. Hazard. Mater. B109:191–199.CrossRef Arica, M. A., Bayremoglu, G., Yilmaz, M., Bektas, S., and Genc, O. 2004. Biosorption of Hg2+, Cd2+ and Zn2+ by Ca-alginate and immobilized wood-rotting fungus Funalia trogii. J. Hazard. Mater. B109:191–199.CrossRef
Zurück zum Zitat Aydin, H., Bulut, Y., and Yerlikaya, C. 2008. Removal of copper (II) fromaqueous solution by adsorption onto low-cost adsorbents. J. Environ. Manage. 87:37–45.CrossRef Aydin, H., Bulut, Y., and Yerlikaya, C. 2008. Removal of copper (II) fromaqueous solution by adsorption onto low-cost adsorbents. J. Environ. Manage. 87:37–45.CrossRef
Zurück zum Zitat Bae, W., Mulchandani, A., and Chen, W. 2002. Cell surface display of synthetic phytochelatins using ice nucleation protein for enhanced heavy metal bioaccumulation, J. Inorg. Biochem. 88:223–227.CrossRef Bae, W., Mulchandani, A., and Chen, W. 2002. Cell surface display of synthetic phytochelatins using ice nucleation protein for enhanced heavy metal bioaccumulation, J. Inorg. Biochem. 88:223–227.CrossRef
Zurück zum Zitat Bae, W., Wu, C. H., Kostal, J., Mulchandani, A., and Chen, W. 2003. Enhanced mercury biosorption by bacterial cells with surface-displayed MerR. Appl. Environ. Microbiol. 69:3176–3180.CrossRef Bae, W., Wu, C. H., Kostal, J., Mulchandani, A., and Chen, W. 2003. Enhanced mercury biosorption by bacterial cells with surface-displayed MerR. Appl. Environ. Microbiol. 69:3176–3180.CrossRef
Zurück zum Zitat Baral, S. S., Das, S. N., and Rath, P. 2006. Hexavalent chromium removal fromaqueous solution by adsorption on treated sawdust. Biochem. Eng. J. 31:216–222.CrossRef Baral, S. S., Das, S. N., and Rath, P. 2006. Hexavalent chromium removal fromaqueous solution by adsorption on treated sawdust. Biochem. Eng. J. 31:216–222.CrossRef
Zurück zum Zitat Baral, S. S., Das, S. N., Rath, P., Roy Chaudhury, P. G., and Swamy, Y. V. 2007. Removal of Cr(VI) from aqueous solution using waste weed, Salvinia cucullata. Chem. Ecol. 23:105–117.CrossRef Baral, S. S., Das, S. N., Rath, P., Roy Chaudhury, P. G., and Swamy, Y. V. 2007. Removal of Cr(VI) from aqueous solution using waste weed, Salvinia cucullata. Chem. Ecol. 23:105–117.CrossRef
Zurück zum Zitat Basha, S., Murthy, Z. V. P., and Jha, B. 2008. Sorption of Hg(II) from aqueous solutions onto Carica papaya: application of isotherms. Ind. Eng. Chem. Res. 47:980–986.CrossRef Basha, S., Murthy, Z. V. P., and Jha, B. 2008. Sorption of Hg(II) from aqueous solutions onto Carica papaya: application of isotherms. Ind. Eng. Chem. Res. 47:980–986.CrossRef
Zurück zum Zitat Beolchini, F., Pagnanelli, F., Toro, L., and Vegliò, F. 2003. Biosorption of copper by Sphaerotilus natans immobilised in polysulfone matrix: equilibrium and kinetic analysis. Hydrometallurgy. 70:101–112. Beolchini, F., Pagnanelli, F., Toro, L., and Vegliò, F. 2003. Biosorption of copper by Sphaerotilus natans immobilised in polysulfone matrix: equilibrium and kinetic analysis. Hydrometallurgy. 70:101–112.
Zurück zum Zitat Beolchini, F., Pagnanelli, F., Toro, L., and Vegliò, F. 2006. Ionic strength effect on copper biosorption by Sphaerotilus natans: equilibrium study and dynamic modelling in membrane reactor. Water. Res. 40:144–152.CrossRef Beolchini, F., Pagnanelli, F., Toro, L., and Vegliò, F. 2006. Ionic strength effect on copper biosorption by Sphaerotilus natans: equilibrium study and dynamic modelling in membrane reactor. Water. Res. 40:144–152.CrossRef
Zurück zum Zitat Beveridge, T. J. 1989. Role of cellular design in bacterial metal accumulation and mineralization. Annu. Rev. Microbiol. 43:147–171.CrossRef Beveridge, T. J. 1989. Role of cellular design in bacterial metal accumulation and mineralization. Annu. Rev. Microbiol. 43:147–171.CrossRef
Zurück zum Zitat Beveridge, T. J. 2001. Use of the Gram stain in microbiology. Biotech. Histochem. 76:111–8.CrossRef Beveridge, T. J. 2001. Use of the Gram stain in microbiology. Biotech. Histochem. 76:111–8.CrossRef
Zurück zum Zitat Bueno, B. Y. M., Torem, M. L., Molina, F., and de Mesquita. L. M. S. 2008. Biosorption of lead(II), chromium(III) and copper(II) by R. opacus: equilibrium and kinetic studies. Miner. Eng. 21:65–75.CrossRef Bueno, B. Y. M., Torem, M. L., Molina, F., and de Mesquita. L. M. S. 2008. Biosorption of lead(II), chromium(III) and copper(II) by R. opacus: equilibrium and kinetic studies. Miner. Eng. 21:65–75.CrossRef
Zurück zum Zitat Cabuk, A., Akar, T., Tunali, S., and Gedikli, S. 2007. Biosorption of Pb(II) by industrial strain of Saccharomyces cerevisiae immobilized on the biomatrix of cone biomass of Pinus nigra: equilibrium and mechanism analysis. Chem. Eng. J. 131:293–300.CrossRef Cabuk, A., Akar, T., Tunali, S., and Gedikli, S. 2007. Biosorption of Pb(II) by industrial strain of Saccharomyces cerevisiae immobilized on the biomatrix of cone biomass of Pinus nigra: equilibrium and mechanism analysis. Chem. Eng. J. 131:293–300.CrossRef
Zurück zum Zitat Calfa, B. A., and Torem, M. L. 2008. On the fundamentals of Cr(III) removal from liquid streams by a bacterial strain. Miner. Eng. 21:48–54.CrossRef Calfa, B. A., and Torem, M. L. 2008. On the fundamentals of Cr(III) removal from liquid streams by a bacterial strain. Miner. Eng. 21:48–54.CrossRef
Zurück zum Zitat Cayllahua, J. E. B., de Carvalho, R. J., and Torem. M. L. 2009. Evaluation of equilibrium, kinetic and thermodynamic parameters for biosorption of nickel(II) ions onto bacteria strain, Rhodococcus opacus. Miner. Eng. 22:1318–1325.CrossRef Cayllahua, J. E. B., de Carvalho, R. J., and Torem. M. L. 2009. Evaluation of equilibrium, kinetic and thermodynamic parameters for biosorption of nickel(II) ions onto bacteria strain, Rhodococcus opacus. Miner. Eng. 22:1318–1325.CrossRef
Zurück zum Zitat Chen, S. L., Kim, E., Shuler, M. L., and Wilson, D. B. 1998. Hg removal by genetically engineered Escherichia coli in a hollow fiber bioreactor. Biotechnol. Prog. 14:667–671.CrossRef Chen, S. L., Kim, E., Shuler, M. L., and Wilson, D. B. 1998. Hg removal by genetically engineered Escherichia coli in a hollow fiber bioreactor. Biotechnol. Prog. 14:667–671.CrossRef
Zurück zum Zitat Chen, X. C.,Wang, Y. P., Lin, Q., Shi, J. Y., Wu, W. X., and Chen, Y. X. 2005. Biosorption of copper(II) and zinc(II) from aqueous solution by Pseudomonas putida CZ1. Colloid. Surf. B Physicochem. Eng. Aspect. 46:101–107. Chen, X. C.,Wang, Y. P., Lin, Q., Shi, J. Y., Wu, W. X., and Chen, Y. X. 2005. Biosorption of copper(II) and zinc(II) from aqueous solution by Pseudomonas putida CZ1. Colloid. Surf. B Physicochem. Eng. Aspect. 46:101–107.
Zurück zum Zitat Chen, G., Zeng, G., Tang, L., Du, C., Jiang, X., Huang, G., Liu, H., and Shen, G. 2008. Cadmium removal from simulated wastewater to biomass byproduct of Lentinus edodes. Bioresour. Technol. 99:7034–7040.CrossRef Chen, G., Zeng, G., Tang, L., Du, C., Jiang, X., Huang, G., Liu, H., and Shen, G. 2008. Cadmium removal from simulated wastewater to biomass byproduct of Lentinus edodes. Bioresour. Technol. 99:7034–7040.CrossRef
Zurück zum Zitat Choi, S. B., and Yun, Y. S. 2004. Lead biosorption by waste biomass of Corynebacterium glutamicum generated from lysine fermentation process. Biotechnol. Lett. 26:331–336.CrossRef Choi, S. B., and Yun, Y. S. 2004. Lead biosorption by waste biomass of Corynebacterium glutamicum generated from lysine fermentation process. Biotechnol. Lett. 26:331–336.CrossRef
Zurück zum Zitat Choudhary, S., and Sar, P. 2009. Characterization of a metal resistant Pseudomonas sp. isolated from uranium mine for its potential in heavy metal (Ni2+, Co2+, Cu2+, and Cd2+) sequestration. Bioresour. Technol. 100:2482–2492.CrossRef Choudhary, S., and Sar, P. 2009. Characterization of a metal resistant Pseudomonas sp. isolated from uranium mine for its potential in heavy metal (Ni2+, Co2+, Cu2+, and Cd2+) sequestration. Bioresour. Technol. 100:2482–2492.CrossRef
Zurück zum Zitat Chu, K. H. 2004. Improved fixed bed models for metal biosorption. Chem. Eng. J. 97:233–239.CrossRef Chu, K. H. 2004. Improved fixed bed models for metal biosorption. Chem. Eng. J. 97:233–239.CrossRef
Zurück zum Zitat Chubar, N., Behrends, T., and Cappellen, P. V. 2008. Gram-negative bacterium Shewanella putrefaciens. Colloid. Surf. B Physicochem. Eng. Aspect. 65:126–133 Chubar, N., Behrends, T., and Cappellen, P. V. 2008. Gram-negative bacterium Shewanella putrefaciens. Colloid. Surf. B Physicochem. Eng. Aspect. 65:126–133
Zurück zum Zitat Cossich, E. S., da Silva, E. A., Tavares, C. R. G., Filho, L. C., and Ravagnani, T. M. K. 2004. Biosorption of chromium(III) by biomass of seaweed Sargassum sp. in a fixed-bed column. Adsorption 10:129–138.CrossRef Cossich, E. S., da Silva, E. A., Tavares, C. R. G., Filho, L. C., and Ravagnani, T. M. K. 2004. Biosorption of chromium(III) by biomass of seaweed Sargassum sp. in a fixed-bed column. Adsorption 10:129–138.CrossRef
Zurück zum Zitat Davis, T. A., Volesky, B., and Vieira, R. H. S. F. 2000. Sargassum seaweed as biosorbent for heavy metals. Water Res. 34:4270–4278.CrossRef Davis, T. A., Volesky, B., and Vieira, R. H. S. F. 2000. Sargassum seaweed as biosorbent for heavy metals. Water Res. 34:4270–4278.CrossRef
Zurück zum Zitat Davis, T. A., Volesky, B., and Mucci, A. 2003. A review of the biochemistry heavy metal biosorption by brown algae. Water Res. 37:4311–4330.CrossRef Davis, T. A., Volesky, B., and Mucci, A. 2003. A review of the biochemistry heavy metal biosorption by brown algae. Water Res. 37:4311–4330.CrossRef
Zurück zum Zitat de Vargas, I., Macaskie, L. E., and Guibal, E. 2004. Biosorption of palladium and platinum by sulfate-reducing bacteria. J. Chem. Technol. Biotechnol. 79:49–56.CrossRef de Vargas, I., Macaskie, L. E., and Guibal, E. 2004. Biosorption of palladium and platinum by sulfate-reducing bacteria. J. Chem. Technol. Biotechnol. 79:49–56.CrossRef
Zurück zum Zitat Deng, L., Su, Y., Su, H., Wang, X., and Zhu, X. 2006. Biosorption of copper (II) and lead (II) fromaqueous solutions by nonliving green algae Cladophora fascicularis: equilibrium, kinetics and environmental effects. Adsorption 12:267–277.CrossRef Deng, L., Su, Y., Su, H., Wang, X., and Zhu, X. 2006. Biosorption of copper (II) and lead (II) fromaqueous solutions by nonliving green algae Cladophora fascicularis: equilibrium, kinetics and environmental effects. Adsorption 12:267–277.CrossRef
Zurück zum Zitat Deng, X., Yi, X., and Liu, G. 2008. Cadmium removal from aqueous solution by gene-modified Escherichia coli JM109. J. Hazard. Mater. 139:340–344.CrossRef Deng, X., Yi, X., and Liu, G. 2008. Cadmium removal from aqueous solution by gene-modified Escherichia coli JM109. J. Hazard. Mater. 139:340–344.CrossRef
Zurück zum Zitat Djeribi, R., and Hamdaoui, O. 2008. Sorption of copper(II) from aqueous solutions by cedar sawdust and crushed brick. Desalination 225:95–112.CrossRef Djeribi, R., and Hamdaoui, O. 2008. Sorption of copper(II) from aqueous solutions by cedar sawdust and crushed brick. Desalination 225:95–112.CrossRef
Zurück zum Zitat Dundar, M., Nuhoglu, C., and Nuhoglu, Y. 2008. Biosorption of Cu(II) ions onto the litter of natural trembling poplar forest. J. Hazard. Mater. 151:86–95.CrossRef Dundar, M., Nuhoglu, C., and Nuhoglu, Y. 2008. Biosorption of Cu(II) ions onto the litter of natural trembling poplar forest. J. Hazard. Mater. 151:86–95.CrossRef
Zurück zum Zitat Dursun, A. Y. 2006. A comparative study on determination of the equilibrium, kinetic and thermodynamic parameters of biosorption of copper(II) and lead(II) ions onto pretreated Aspergillus niger. Biochem. Eng. J. 28:187–195.CrossRef Dursun, A. Y. 2006. A comparative study on determination of the equilibrium, kinetic and thermodynamic parameters of biosorption of copper(II) and lead(II) ions onto pretreated Aspergillus niger. Biochem. Eng. J. 28:187–195.CrossRef
Zurück zum Zitat Flemming, H. C., and Wingender, J. 2001. Relevance of microbial extracellular polymeric substances (EPSs) – Part I: structural and ecological aspects. Water. Sci. Technol. 43:1–8. Flemming, H. C., and Wingender, J. 2001. Relevance of microbial extracellular polymeric substances (EPSs) – Part I: structural and ecological aspects. Water. Sci. Technol. 43:1–8.
Zurück zum Zitat Gabr, R. M., Hassan, S. H. A., and Shoreit A. A. M. 2008. Biosorption of lead and nickel by living and non-living cells of Pseudomonas aeruginosa ASU 6a. Int. Biodeterior. Biodegradation 62:195–203.CrossRef Gabr, R. M., Hassan, S. H. A., and Shoreit A. A. M. 2008. Biosorption of lead and nickel by living and non-living cells of Pseudomonas aeruginosa ASU 6a. Int. Biodeterior. Biodegradation 62:195–203.CrossRef
Zurück zum Zitat Gokhale, S. V., Jyoti, K. K., and Lele, S. S. 2008. Kinetic and equilibrium modeling of chromium (VI) biosorption on fresh and spent Spirulina platensis/Chlorella vulgaris biomass. Bioresour. Technol. 99:3600–3608.CrossRef Gokhale, S. V., Jyoti, K. K., and Lele, S. S. 2008. Kinetic and equilibrium modeling of chromium (VI) biosorption on fresh and spent Spirulina platensis/Chlorella vulgaris biomass. Bioresour. Technol. 99:3600–3608.CrossRef
Zurück zum Zitat Green-Ruiz, C. 2006. Mercury(II) removal from aqueous solutions by nonviable Bacillus sp. from a tropical estuary. Bioresour. Technol. 97:1907–1911.CrossRef Green-Ruiz, C. 2006. Mercury(II) removal from aqueous solutions by nonviable Bacillus sp. from a tropical estuary. Bioresour. Technol. 97:1907–1911.CrossRef
Zurück zum Zitat Green-Ruiz, C., Rodriguez-Tirado, V., and Gomez-Gil, B. 2008. Cadmium and zinc removal from aqueous solutions by Bacillus jeotgali: pH, salinity and temperature effects. Bioresour. Technol. 99:3864–3870.CrossRef Green-Ruiz, C., Rodriguez-Tirado, V., and Gomez-Gil, B. 2008. Cadmium and zinc removal from aqueous solutions by Bacillus jeotgali: pH, salinity and temperature effects. Bioresour. Technol. 99:3864–3870.CrossRef
Zurück zum Zitat Grill, E. 1987. Phytochelatins, the heavy metal binding peptides of plants: characterization and sequence determination. Experientia. Suppl. 52:317–322. Grill, E. 1987. Phytochelatins, the heavy metal binding peptides of plants: characterization and sequence determination. Experientia. Suppl. 52:317–322.
Zurück zum Zitat Guo, X. Y., Zhang, A. Z., and Shan, X. Q. 2008. Adsorption of metal ions on lignin. J. Hazard. Mater. 151:134–142.CrossRef Guo, X. Y., Zhang, A. Z., and Shan, X. Q. 2008. Adsorption of metal ions on lignin. J. Hazard. Mater. 151:134–142.CrossRef
Zurück zum Zitat Gupta, V. K., and Rastogi, A. 2008. Biosorption of lead from aqueous solutions by green algae Spirogyra species: kinetics and equilibrium studies. J. Hazard. Mater. 152:407–414.CrossRef Gupta, V. K., and Rastogi, A. 2008. Biosorption of lead from aqueous solutions by green algae Spirogyra species: kinetics and equilibrium studies. J. Hazard. Mater. 152:407–414.CrossRef
Zurück zum Zitat Gutnick, D. L., and Bach. H. 2000. Engineering bacterial biopolymers for the biosorption of heavy metals; new products and novel formulations. Appl. Microbiol. Biotechnol. 54:451–461.CrossRef Gutnick, D. L., and Bach. H. 2000. Engineering bacterial biopolymers for the biosorption of heavy metals; new products and novel formulations. Appl. Microbiol. Biotechnol. 54:451–461.CrossRef
Zurück zum Zitat Hanif, M. A., Nadeem, R., Bhatti, H. N., Ahmad, N. R., and Ansari, T. M. 2007. Ni(II) biosorption by Cassia fistula (Golden Shower) biomass. J. Hazard. Mater. B139:345–355.CrossRef Hanif, M. A., Nadeem, R., Bhatti, H. N., Ahmad, N. R., and Ansari, T. M. 2007. Ni(II) biosorption by Cassia fistula (Golden Shower) biomass. J. Hazard. Mater. B139:345–355.CrossRef
Zurück zum Zitat Hasan, S. H., and Srivastava, P. 2009. Batch and continuous biosorption of Cu2+ by immobilized biomass of Arthrobacter sp. J. Environ. Manage. 90:3313–3321.CrossRef Hasan, S. H., and Srivastava, P. 2009. Batch and continuous biosorption of Cu2+ by immobilized biomass of Arthrobacter sp. J. Environ. Manage. 90:3313–3321.CrossRef
Zurück zum Zitat Hasan, S. H., Srivastava, P., and Talat, M. 2009. Biosorption of Pb(II) from water using biomass of Aeromonas hydrophila: Central composite design for optimization of process variables. J. Hazard. Mater. 15:1155–1162.CrossRef Hasan, S. H., Srivastava, P., and Talat, M. 2009. Biosorption of Pb(II) from water using biomass of Aeromonas hydrophila: Central composite design for optimization of process variables. J. Hazard. Mater. 15:1155–1162.CrossRef
Zurück zum Zitat Ho, Y. 2006. Isotherms for the sorption of lead onto peat: comparison of linear and non-linear methods. Pol. J. Environ Stud. 15:81–86. Ho, Y. 2006. Isotherms for the sorption of lead onto peat: comparison of linear and non-linear methods. Pol. J. Environ Stud. 15:81–86.
Zurück zum Zitat Ho, Y. S., and McKay, G. 2002. Application of kinetic models to the sorption of copper(II) on to peat. Adsorp. Sci. Technol. 20:797–815.CrossRef Ho, Y. S., and McKay, G. 2002. Application of kinetic models to the sorption of copper(II) on to peat. Adsorp. Sci. Technol. 20:797–815.CrossRef
Zurück zum Zitat Ho, Y., and Ofomaja, A. E. 2006. Biosorption thermodynamics of cadmium on coconut copra meal as biosorbent. Biochem. Eng. J. 30:117–123.CrossRef Ho, Y., and Ofomaja, A. E. 2006. Biosorption thermodynamics of cadmium on coconut copra meal as biosorbent. Biochem. Eng. J. 30:117–123.CrossRef
Zurück zum Zitat Huang, C. C., Su, C. C., Hsieh, J. L., Tseng, C. P., Lin, P. L., and Chang, J. S. 2003. Polypeptides for heavy-metal biosorption: capacity and specificity of two heterogeneous MerP proteins. Enzyme Microb. Technol. 33:379–385.CrossRef Huang, C. C., Su, C. C., Hsieh, J. L., Tseng, C. P., Lin, P. L., and Chang, J. S. 2003. Polypeptides for heavy-metal biosorption: capacity and specificity of two heterogeneous MerP proteins. Enzyme Microb. Technol. 33:379–385.CrossRef
Zurück zum Zitat Hu, H. T., and Wang, H. N. 2003. Heavy metal treatment in water by biosorption. Environ. Protect. Xinjiang. 25:22–25.CrossRef Hu, H. T., and Wang, H. N. 2003. Heavy metal treatment in water by biosorption. Environ. Protect. Xinjiang. 25:22–25.CrossRef
Zurück zum Zitat Igwe, J. C., and Abia, A. A. 2007. Equilibrium sorption isotherm studies of Cd(II), Pb(II) and Zn(II) ions detoxification from waste water using unmodified and EDTA modified maize husk. Electron. J. Biotechnol. 10:536–548. Igwe, J. C., and Abia, A. A. 2007. Equilibrium sorption isotherm studies of Cd(II), Pb(II) and Zn(II) ions detoxification from waste water using unmodified and EDTA modified maize husk. Electron. J. Biotechnol. 10:536–548.
Zurück zum Zitat Iqbal, M., Saeed, A., and Zafar, S. I. 2007. Hybrid biosorbent: an innovative matrix to enhance the biosorption of Cd(II) from aqueous solution. J. Hazard. Mater. 148:47–55.CrossRef Iqbal, M., Saeed, A., and Zafar, S. I. 2007. Hybrid biosorbent: an innovative matrix to enhance the biosorption of Cd(II) from aqueous solution. J. Hazard. Mater. 148:47–55.CrossRef
Zurück zum Zitat Isik, M. 2008. Biosorption of Ni(II) from aqueous solutions by living and non-living ureolytic mixed culture. Colloids Surf. B Biointerfaces 62:97–104.CrossRef Isik, M. 2008. Biosorption of Ni(II) from aqueous solutions by living and non-living ureolytic mixed culture. Colloids Surf. B Biointerfaces 62:97–104.CrossRef
Zurück zum Zitat Jansson-Charrier, M., Guibal, E., Roussy, J., Surjous, R., and LeCloirec, P. 1996. Dynamic removal of uranium by chitosan: influence of operating parameters. Water Sci. Technol. 34:169–177. Jansson-Charrier, M., Guibal, E., Roussy, J., Surjous, R., and LeCloirec, P. 1996. Dynamic removal of uranium by chitosan: influence of operating parameters. Water Sci. Technol. 34:169–177.
Zurück zum Zitat Javed, M. A., Bhatti, H. N., Hanif, M. A., and Nadeem, R. 2007. Kinetic, equilibrium modeling of Pb(II) and Co(II) sorption onto rose waste biomass. Sep. Sci. Technol. 42:3641–3656.CrossRef Javed, M. A., Bhatti, H. N., Hanif, M. A., and Nadeem, R. 2007. Kinetic, equilibrium modeling of Pb(II) and Co(II) sorption onto rose waste biomass. Sep. Sci. Technol. 42:3641–3656.CrossRef
Zurück zum Zitat Jian-hua, P., Rui-xia, L., and Hong-xiao, T. 2007. Surface reaction of Bacillus cereus biomass and its biosorption for lead and copper ions. J. Environ. Sci. 19:403–408.CrossRef Jian-hua, P., Rui-xia, L., and Hong-xiao, T. 2007. Surface reaction of Bacillus cereus biomass and its biosorption for lead and copper ions. J. Environ. Sci. 19:403–408.CrossRef
Zurück zum Zitat Kang, S. Y., Lee, J. U., and Kim, K. W. 2007. Biosorption of Cr(III) and Cr(VI) onto the cell surface of Pseudomonas aeruginosa. Biochem. Eng. J. 36:54–58.CrossRef Kang, S. Y., Lee, J. U., and Kim, K. W. 2007. Biosorption of Cr(III) and Cr(VI) onto the cell surface of Pseudomonas aeruginosa. Biochem. Eng. J. 36:54–58.CrossRef
Zurück zum Zitat Kao, W. C., Chiu, Y. P., Chang, C. C., and Chang, J. S. 2006. Localization effect on the metal biosorption capability of recombinant mammalian and fish metallothioneins in Escherichia coli. Biotechnol. Prog. 22:1256–1264.CrossRef Kao, W. C., Chiu, Y. P., Chang, C. C., and Chang, J. S. 2006. Localization effect on the metal biosorption capability of recombinant mammalian and fish metallothioneins in Escherichia coli. Biotechnol. Prog. 22:1256–1264.CrossRef
Zurück zum Zitat Kao, W., Huang, C., and Chang, J. 2008. Biosorption of nickel, chromium and zinc by MerP-expressing recombinant Escherichia coli. J. Hazard. Mater. 158:100–106.CrossRef Kao, W., Huang, C., and Chang, J. 2008. Biosorption of nickel, chromium and zinc by MerP-expressing recombinant Escherichia coli. J. Hazard. Mater. 158:100–106.CrossRef
Zurück zum Zitat Kao, W. C., Wu, J. Y., Chang, C. C., and Chang J. S. 2009. Cadmium biosorption by polyvinyl alcohol immobilized recombinant Escherichia coli. J. Hazard. Mater. 169:651–658.CrossRef Kao, W. C., Wu, J. Y., Chang, C. C., and Chang J. S. 2009. Cadmium biosorption by polyvinyl alcohol immobilized recombinant Escherichia coli. J. Hazard. Mater. 169:651–658.CrossRef
Zurück zum Zitat Kapoor, A., and Viraraghavan, T. 1997. Heavy metal biosorption sites in Aspergillus niger. Bioresour. Technol. 61:221–227.CrossRef Kapoor, A., and Viraraghavan, T. 1997. Heavy metal biosorption sites in Aspergillus niger. Bioresour. Technol. 61:221–227.CrossRef
Zurück zum Zitat Kazy, S. K., Das, S. K., and Sar, P. 2006. Lanthanum biosorption by a Pseudomonas sp.: equilibrium studies and chemical characterization. J. Ind. Microbiol. Biotech. 33:773–83.CrossRef Kazy, S. K., Das, S. K., and Sar, P. 2006. Lanthanum biosorption by a Pseudomonas sp.: equilibrium studies and chemical characterization. J. Ind. Microbiol. Biotech. 33:773–83.CrossRef
Zurück zum Zitat Kiran, B., and Kaushik, A. 2008. Chromium binding capacity of Lyngbya putealis exopolysaccharides. Biochem. Eng. J. 38:47–54.CrossRef Kiran, B., and Kaushik, A. 2008. Chromium binding capacity of Lyngbya putealis exopolysaccharides. Biochem. Eng. J. 38:47–54.CrossRef
Zurück zum Zitat Kiran, I., Akar, T., and Tunali, S. 2005. Biosorption of Pb(II) and Cu(II) from aqueous solutions by pretreated biomass of Neurospora crassa. Process Biochem. 40:3550–3558.CrossRef Kiran, I., Akar, T., and Tunali, S. 2005. Biosorption of Pb(II) and Cu(II) from aqueous solutions by pretreated biomass of Neurospora crassa. Process Biochem. 40:3550–3558.CrossRef
Zurück zum Zitat Kratochvil, D., and Volesky, B. 1998. Advances in the biosorption of heavy metals. TIBTECH. 16:291–300. Kratochvil, D., and Volesky, B. 1998. Advances in the biosorption of heavy metals. TIBTECH. 16:291–300.
Zurück zum Zitat Kratochvil, D., and Volesky, B. 2000. Multicomponent biosorption in fixed beds. Water Res. 34:3186–3196.CrossRef Kratochvil, D., and Volesky, B. 2000. Multicomponent biosorption in fixed beds. Water Res. 34:3186–3196.CrossRef
Zurück zum Zitat Kumar, R., Bishnoi, N. R., Garima, and Bishnoi, K. 2008. Biosorption of chromium(VI) from aqueous solution and electroplating wastewater using fungal biomass. Chem. Eng. J. 135:202–208.CrossRef Kumar, R., Bishnoi, N. R., Garima, and Bishnoi, K. 2008. Biosorption of chromium(VI) from aqueous solution and electroplating wastewater using fungal biomass. Chem. Eng. J. 135:202–208.CrossRef
Zurück zum Zitat Kuyucak, N., and Volesky, B. 1989. Desorption of cobalt-laden algal biosorbent. Biotechnol. Bioeng. 33:815–822.CrossRef Kuyucak, N., and Volesky, B. 1989. Desorption of cobalt-laden algal biosorbent. Biotechnol. Bioeng. 33:815–822.CrossRef
Zurück zum Zitat Langley, S., and Beveridge, T. J. 1999. Effect of O-side-chainlipopolysaccharide chemistry on metal binding. Appl. Environ. Microbiol. 65:489–498. Langley, S., and Beveridge, T. J. 1999. Effect of O-side-chainlipopolysaccharide chemistry on metal binding. Appl. Environ. Microbiol. 65:489–498.
Zurück zum Zitat Lin, C. C., and Lai, Y. T. 2006. Adsorption and recovery of lead(II) from aqueous solutions by immobilized Pseudomonas aeruginosa PU21 beads. J. Hazard. Mater. 137:99–105.CrossRef Lin, C. C., and Lai, Y. T. 2006. Adsorption and recovery of lead(II) from aqueous solutions by immobilized Pseudomonas aeruginosa PU21 beads. J. Hazard. Mater. 137:99–105.CrossRef
Zurück zum Zitat Liu, H. L., Chen, B. Y., Lan, Y. W., and Cheng, Y. C. 2004. Biosorption of Zn(II) and Cu(II) by the indigenous Thiobacillus thiooxidans. Chem. Eng. J. 97:195–201.CrossRef Liu, H. L., Chen, B. Y., Lan, Y. W., and Cheng, Y. C. 2004. Biosorption of Zn(II) and Cu(II) by the indigenous Thiobacillus thiooxidans. Chem. Eng. J. 97:195–201.CrossRef
Zurück zum Zitat Liu, R., Ma, W., Jia, C., Wang, L., and Li, H. 2007. Effect of pH on biosorption of boron onto cotton cellulose. Desalination 207:257–267.CrossRef Liu, R., Ma, W., Jia, C., Wang, L., and Li, H. 2007. Effect of pH on biosorption of boron onto cotton cellulose. Desalination 207:257–267.CrossRef
Zurück zum Zitat Lloyd, J. R. 2002. Bioremediation of metals: the application of microorganisms that make and break minerals. Microbiol. Today 29:67–69. Lloyd, J. R. 2002. Bioremediation of metals: the application of microorganisms that make and break minerals. Microbiol. Today 29:67–69.
Zurück zum Zitat Loukidou, M. X., Karapantsios, T. D., Zouboulis, A. I., and Matis, K. A. 2004. Diffusion kinetic study of chromium (VI) biosorption by Aeromonas caviae. Ind. Eng. Chem. Res. 242:93–104. Loukidou, M. X., Karapantsios, T. D., Zouboulis, A. I., and Matis, K. A. 2004. Diffusion kinetic study of chromium (VI) biosorption by Aeromonas caviae. Ind. Eng. Chem. Res. 242:93–104.
Zurück zum Zitat Lu, S., and Gibb, S. W. 2008. Copper removal from wastewater using spent-grain as biosorbent. Bioresour. Technol. 99:1509–1517.CrossRef Lu, S., and Gibb, S. W. 2008. Copper removal from wastewater using spent-grain as biosorbent. Bioresour. Technol. 99:1509–1517.CrossRef
Zurück zum Zitat Lu, W. B., Shi, J. J., Wang, C. H., and Chang, J. S. 2006. Biosorption of lead, copper and cadmium by an indigenous isolate Enterobacter sp J1 possessing high heavy-metal resistance. J. Hazard. Mater. 134:80–86.CrossRef Lu, W. B., Shi, J. J., Wang, C. H., and Chang, J. S. 2006. Biosorption of lead, copper and cadmium by an indigenous isolate Enterobacter sp J1 possessing high heavy-metal resistance. J. Hazard. Mater. 134:80–86.CrossRef
Zurück zum Zitat Ma, W., and Tobin, J. M. (2004). Determination and modeling of effects of pH on peat biosorption of chromium, copper and cadmium. Biochem. Eng. J. 18:33–40.CrossRef Ma, W., and Tobin, J. M. (2004). Determination and modeling of effects of pH on peat biosorption of chromium, copper and cadmium. Biochem. Eng. J. 18:33–40.CrossRef
Zurück zum Zitat Mack, C. L., Wilhelmi, B., Duncan, J. R., and Burgess, J. E. 2008. A kinetic study of the recovery of platinum ions from an artificial aqueous solution by immobilized Saccharomyces cerevisiae biomass. Miner. Eng. 21:31–37.CrossRef Mack, C. L., Wilhelmi, B., Duncan, J. R., and Burgess, J. E. 2008. A kinetic study of the recovery of platinum ions from an artificial aqueous solution by immobilized Saccharomyces cerevisiae biomass. Miner. Eng. 21:31–37.CrossRef
Zurück zum Zitat Madigan, M. T., Martinko, J. M., and Parker, J. 2000. Brock biology of microorganisms. Upper Saddle River, NJ: Pearson Prentice Hall. Madigan, M. T., Martinko, J. M., and Parker, J. 2000. Brock biology of microorganisms. Upper Saddle River, NJ: Pearson Prentice Hall.
Zurück zum Zitat Malkoc, E., and Nuhoglu, Y. 2005. Investigations of nickel (II) removal from aqueous solutions using tea factory waste. J. Hazard. Mater. B127:120–128.CrossRef Malkoc, E., and Nuhoglu, Y. 2005. Investigations of nickel (II) removal from aqueous solutions using tea factory waste. J. Hazard. Mater. B127:120–128.CrossRef
Zurück zum Zitat Mann, H. 1990. Removal and recovery of heavy metals by biosorption. In: Volesky B, ed. Biosorption of heavy metals, pp.93–137. Boca Raton: CRC press.CrossRef Mann, H. 1990. Removal and recovery of heavy metals by biosorption. In: Volesky B, ed. Biosorption of heavy metals, pp.93–137. Boca Raton: CRC press.CrossRef
Zurück zum Zitat Miretzky, P., Munoz, C., and Carrillo-Chavez, A. 2008. Experimental binding of lead to a low cost on biosorbent: Nopal (Opuntia streptacantha). Bioresour. Technol. 99:1211–1217.CrossRef Miretzky, P., Munoz, C., and Carrillo-Chavez, A. 2008. Experimental binding of lead to a low cost on biosorbent: Nopal (Opuntia streptacantha). Bioresour. Technol. 99:1211–1217.CrossRef
Zurück zum Zitat Mishra, S., and Doble, M. 2008. Novel chromium tolerant microorganisms: isolation, characterization and their biosorption capacity. Ecotoxicol. Environ. Saf. 71:874–879.CrossRef Mishra, S., and Doble, M. 2008. Novel chromium tolerant microorganisms: isolation, characterization and their biosorption capacity. Ecotoxicol. Environ. Saf. 71:874–879.CrossRef
Zurück zum Zitat Moat, A. G., Foster, J. W., and Spector, M. P. 2002. Microbial physiology. New York: Wiley-Liss.CrossRef Moat, A. G., Foster, J. W., and Spector, M. P. 2002. Microbial physiology. New York: Wiley-Liss.CrossRef
Zurück zum Zitat Mondal, P., Majumder, C.B., and Mohanty, B., 2008. Growth of three bacteria in arsenic solution and their application for arsenic removal from wastewater. J. Basic. Microbiol. 48:1–5.CrossRef Mondal, P., Majumder, C.B., and Mohanty, B., 2008. Growth of three bacteria in arsenic solution and their application for arsenic removal from wastewater. J. Basic. Microbiol. 48:1–5.CrossRef
Zurück zum Zitat Muraleedharan, T. R., Iyengar, L., and Venkobachar, C. 1991. Biosorption: an attractive alternative for metal removal and recovery. Curr. Sci. 61:379–385. Muraleedharan, T. R., Iyengar, L., and Venkobachar, C. 1991. Biosorption: an attractive alternative for metal removal and recovery. Curr. Sci. 61:379–385.
Zurück zum Zitat Muraleedharan, T., Philip, R., Iyengar, L. L., and Venkobachar, C. 1994. Application studies of biosorption for monazite processing industry effluents. Bioresour. Technol. 49:179–186.CrossRef Muraleedharan, T., Philip, R., Iyengar, L. L., and Venkobachar, C. 1994. Application studies of biosorption for monazite processing industry effluents. Bioresour. Technol. 49:179–186.CrossRef
Zurück zum Zitat Naja, G., and Volesky, B. 2006. Behavior of the mass transfer zone in a biosorption column. Environ. Sci. Technol. 40:3996–4003.CrossRef Naja, G., and Volesky, B. 2006. Behavior of the mass transfer zone in a biosorption column. Environ. Sci. Technol. 40:3996–4003.CrossRef
Zurück zum Zitat Nakajima, A., and Tsuruta, T. 2004. Competitive biosorption of thorium and uranium by Micrococcus luteus. J. Radioanal. Nucl. Chem. 260:13–18.CrossRef Nakajima, A., and Tsuruta, T. 2004. Competitive biosorption of thorium and uranium by Micrococcus luteus. J. Radioanal. Nucl. Chem. 260:13–18.CrossRef
Zurück zum Zitat Namasivayam, C., and Sureshkumar, M. V. 2008. Removal of chromium(VI) from water and wastewater using surfactant modified coconut coirpith as biosorbent. Bioresour. Technol. 99:2218–2225.CrossRef Namasivayam, C., and Sureshkumar, M. V. 2008. Removal of chromium(VI) from water and wastewater using surfactant modified coconut coirpith as biosorbent. Bioresour. Technol. 99:2218–2225.CrossRef
Zurück zum Zitat Nasreen, K., Muhammad, I., Iqbal, Z. S., and Javed, I. 2008. Biosorption characteristics of unicellular green alga Chlorella sorokiniana immobilized in loofa sponge for removal of Cr(III). J. Environ. Sci. 20:231–239.CrossRef Nasreen, K., Muhammad, I., Iqbal, Z. S., and Javed, I. 2008. Biosorption characteristics of unicellular green alga Chlorella sorokiniana immobilized in loofa sponge for removal of Cr(III). J. Environ. Sci. 20:231–239.CrossRef
Zurück zum Zitat Ofomaja, A. E., and Ho, Y. 2007. Effect of pH on cadmium biosorption by coconut copra meal. J. Hazard. Mater. B139:356–362.CrossRef Ofomaja, A. E., and Ho, Y. 2007. Effect of pH on cadmium biosorption by coconut copra meal. J. Hazard. Mater. B139:356–362.CrossRef
Zurück zum Zitat O’Mahony, T., Guibal, E., and Tobin, J. M. 2002. Reactive dye biosorption by Rhizopus arrhizus biomass. Enzyme Microb. Technol. 31:456–463.CrossRef O’Mahony, T., Guibal, E., and Tobin, J. M. 2002. Reactive dye biosorption by Rhizopus arrhizus biomass. Enzyme Microb. Technol. 31:456–463.CrossRef
Zurück zum Zitat Ozdemir, G., and Baysal, S. H. 2004. Chromium and aluminum biosorption on Chryseomonas luteola TEM05. Appl. Microbiol. Biotechnol. 64:599–603.CrossRef Ozdemir, G., and Baysal, S. H. 2004. Chromium and aluminum biosorption on Chryseomonas luteola TEM05. Appl. Microbiol. Biotechnol. 64:599–603.CrossRef
Zurück zum Zitat Ozdemir, S., Kilinc, E., Poli, A., Nicolaus, B., and Guvena, K. 2009. Biosorption of Cd, Cu, Ni, Mn and Zn from aqueous solutions by thermophilic bacteria, Geobacillus toebii sub.sp. decanicus and Geobacillus thermoleovorans sub.sp. stromboliensis: equilibrium, kinetic and thermodynamic studies. Chem. Eng. J. 152:195–206.CrossRef Ozdemir, S., Kilinc, E., Poli, A., Nicolaus, B., and Guvena, K. 2009. Biosorption of Cd, Cu, Ni, Mn and Zn from aqueous solutions by thermophilic bacteria, Geobacillus toebii sub.sp. decanicus and Geobacillus thermoleovorans sub.sp. stromboliensis: equilibrium, kinetic and thermodynamic studies. Chem. Eng. J. 152:195–206.CrossRef
Zurück zum Zitat Öztürk, A. 2007. Removal of nickel from aqueous solution by the bacterium Bacillus thuringiensis. J. Hazard. Mater. 147:518–523.CrossRef Öztürk, A. 2007. Removal of nickel from aqueous solution by the bacterium Bacillus thuringiensis. J. Hazard. Mater. 147:518–523.CrossRef
Zurück zum Zitat Öztürk, A., Artan, T., and Ayar, A. 2004. Biosorption of nickel(II) and copper(II) ions from aqueous solution by Streptomyces coelicolor A3(2). Colloid. Surf. B Physicochem. Eng. Aspect. 34:105–111. Öztürk, A., Artan, T., and Ayar, A. 2004. Biosorption of nickel(II) and copper(II) ions from aqueous solution by Streptomyces coelicolor A3(2). Colloid. Surf. B Physicochem. Eng. Aspect. 34:105–111.
Zurück zum Zitat Padmavathy, V. 2008. Biosorption of nickel(II) ions by baker’s yeast: kinetic, thermodynamic and desorption studies. Bioresour. Technol. 99:3100–3109.CrossRef Padmavathy, V. 2008. Biosorption of nickel(II) ions by baker’s yeast: kinetic, thermodynamic and desorption studies. Bioresour. Technol. 99:3100–3109.CrossRef
Zurück zum Zitat Pamukoglu, M. Y., and Kargi, F. 2007. Effects of operating parameters on kinetics of copper(II) ion biosorption onto pre-treated powdered waste sludge (PWS). Enzyme Microb. Technol. 42:76–82.CrossRef Pamukoglu, M. Y., and Kargi, F. 2007. Effects of operating parameters on kinetics of copper(II) ion biosorption onto pre-treated powdered waste sludge (PWS). Enzyme Microb. Technol. 42:76–82.CrossRef
Zurück zum Zitat Parvathi, K., Nagendran, R., and Nareshkumar, R. 2007. Lead biosorption onto waste beer yeast by-product, a means to decontaminate effluent generated from battery manufacturing industry. Electron. J. Biotechnol. 10:1–14.CrossRef Parvathi, K., Nagendran, R., and Nareshkumar, R. 2007. Lead biosorption onto waste beer yeast by-product, a means to decontaminate effluent generated from battery manufacturing industry. Electron. J. Biotechnol. 10:1–14.CrossRef
Zurück zum Zitat Pasavant, P., Apiratikul, R., Sungkhum, V., Suthiparinyanont, P., Wattanachira, S., and Marhaba, T. F. 2006. Biosorption of Cu2+, Cd2+, Pb2+, and Zn2+ using dried marine green macroalga Caulerpa lentillifera. Bioresour. Technol. 97:2321–2329. Pasavant, P., Apiratikul, R., Sungkhum, V., Suthiparinyanont, P., Wattanachira, S., and Marhaba, T. F. 2006. Biosorption of Cu2+, Cd2+, Pb2+, and Zn2+ using dried marine green macroalga Caulerpa lentillifera. Bioresour. Technol. 97:2321–2329.
Zurück zum Zitat Pazirandeh, M., Wells, B. M., and Ryan, R. L. 1998. Development of bacterium-based heavy metal biosorbents: enhanced uptake of cadmium and mercury by Escherichia coli expressing a metal binding motif. Appl. Environ. Microbiol. 64:4068–4072. Pazirandeh, M., Wells, B. M., and Ryan, R. L. 1998. Development of bacterium-based heavy metal biosorbents: enhanced uptake of cadmium and mercury by Escherichia coli expressing a metal binding motif. Appl. Environ. Microbiol. 64:4068–4072.
Zurück zum Zitat Pollmann, K., Raff, J., Merroun, M., Fahmy, K., and Selenska-Pobell, S. 2006. Metal binding by bacteria from uranium mining waste piles and its technological applications. Biotechnol. Adv. 24:58–68.CrossRef Pollmann, K., Raff, J., Merroun, M., Fahmy, K., and Selenska-Pobell, S. 2006. Metal binding by bacteria from uranium mining waste piles and its technological applications. Biotechnol. Adv. 24:58–68.CrossRef
Zurück zum Zitat Popuri, S. R., Jammala, A., Reddy, K. V. N. S., and Abburi, K. 2007. Biosorption of hexavalent chromium using tamarind (Tamarindus indica) fruit shell – a comparative study. Electron. J. Biotechnol. 10:358–367.CrossRef Popuri, S. R., Jammala, A., Reddy, K. V. N. S., and Abburi, K. 2007. Biosorption of hexavalent chromium using tamarind (Tamarindus indica) fruit shell – a comparative study. Electron. J. Biotechnol. 10:358–367.CrossRef
Zurück zum Zitat Prakasham, R. S., Merrie, J. S., Sheela, R., Saswathi, N., and Ramakrishna, S. V. 1999. Biosorption of chromium VI by free and immobilized Rhizopus arrhizus. Environ. Pollut. 104:421–427.CrossRef Prakasham, R. S., Merrie, J. S., Sheela, R., Saswathi, N., and Ramakrishna, S. V. 1999. Biosorption of chromium VI by free and immobilized Rhizopus arrhizus. Environ. Pollut. 104:421–427.CrossRef
Zurück zum Zitat Preetha, B., and Viruthagiri, T. 2007. Batch and continuous biosorption of chromium(VI) by Rhizopus arrhizus. Separat. Purific. Technol. 57:126–133.CrossRef Preetha, B., and Viruthagiri, T. 2007. Batch and continuous biosorption of chromium(VI) by Rhizopus arrhizus. Separat. Purific. Technol. 57:126–133.CrossRef
Zurück zum Zitat Prescott, L. M., Harley, J. P., and Klein, D. A. 2002. Microbiology. London: McGraw-Hill Science/Engineering/Math. Prescott, L. M., Harley, J. P., and Klein, D. A. 2002. Microbiology. London: McGraw-Hill Science/Engineering/Math.
Zurück zum Zitat Pulsawat, W., Leksawasdi, N., Rogers, P. L., and Foster, L. J. R. 2003. Anions effects on biosorption of Mn(II) by extracellular polymeric substance (EPS) from Rhizobium etli. Biotech. Lett. 25(15):1267–1270.CrossRef Pulsawat, W., Leksawasdi, N., Rogers, P. L., and Foster, L. J. R. 2003. Anions effects on biosorption of Mn(II) by extracellular polymeric substance (EPS) from Rhizobium etli. Biotech. Lett. 25(15):1267–1270.CrossRef
Zurück zum Zitat Puranik, P. R., and Paknikar, K. M. 1999. Biosorption of lead, cadmium, and zinc by Citrobacter strain MCM B-181: characterization studies. Biotechnol. Prog. 15:228–237.CrossRef Puranik, P. R., and Paknikar, K. M. 1999. Biosorption of lead, cadmium, and zinc by Citrobacter strain MCM B-181: characterization studies. Biotechnol. Prog. 15:228–237.CrossRef
Zurück zum Zitat Quintelas, C., Zélia Rocha, Z., Silva, B., Fonseca, B., Figueiredo, H., and Tavares, T. 2009. Removal of Cd(II), Cr(VI), Fe(III) and Ni(II) from aqueous solutions by an E. coli biofilm supported on kaolin. Chem. Eng. J. 149:319–324.CrossRef Quintelas, C., Zélia Rocha, Z., Silva, B., Fonseca, B., Figueiredo, H., and Tavares, T. 2009. Removal of Cd(II), Cr(VI), Fe(III) and Ni(II) from aqueous solutions by an E. coli biofilm supported on kaolin. Chem. Eng. J. 149:319–324.CrossRef
Zurück zum Zitat Rahaman, M. S., Basu, A., and Islam, M. R. 2008. The removal of As(III) and As(V) from aqueous solutions by waste materials. Bioresour. Technol. 99:2815–2823.CrossRef Rahaman, M. S., Basu, A., and Islam, M. R. 2008. The removal of As(III) and As(V) from aqueous solutions by waste materials. Bioresour. Technol. 99:2815–2823.CrossRef
Zurück zum Zitat Saeed, A., and Iqbal, M. 2003. Bioremoval of cadmium from aqueous solution by black gram husk (Cicer arientinum). Water Res. 37:3472–3480.CrossRef Saeed, A., and Iqbal, M. 2003. Bioremoval of cadmium from aqueous solution by black gram husk (Cicer arientinum). Water Res. 37:3472–3480.CrossRef
Zurück zum Zitat Sag, Y., and Aktay, Y. 2002. Kinetic studies on sorption of Cr(VI) and Cu(II) ions by chitin, chitosan, and Rhizopus arrhizus. Biochem. Eng. J. 12:143–153.CrossRef Sag, Y., and Aktay, Y. 2002. Kinetic studies on sorption of Cr(VI) and Cu(II) ions by chitin, chitosan, and Rhizopus arrhizus. Biochem. Eng. J. 12:143–153.CrossRef
Zurück zum Zitat Sag, Y., Akeael, B., and Kutsal, T. 2002. Ternary biosorption equilibria of Cr(VI), Cu(II) and Cd(II) on Rhizopus arrhizus. Sep. Sci. Technol. 37(2):279–309.CrossRef Sag, Y., Akeael, B., and Kutsal, T. 2002. Ternary biosorption equilibria of Cr(VI), Cu(II) and Cd(II) on Rhizopus arrhizus. Sep. Sci. Technol. 37(2):279–309.CrossRef
Zurück zum Zitat Şahin, Y., and Öztürk, A. 2005. Biosorption of chromium(VI) ions from aqueous solution by the bacterium Bacillus thuringiensis. Process Biochem. 40:1895–1901.CrossRef Şahin, Y., and Öztürk, A. 2005. Biosorption of chromium(VI) ions from aqueous solution by the bacterium Bacillus thuringiensis. Process Biochem. 40:1895–1901.CrossRef
Zurück zum Zitat Samuelson, P.,Wernérus, H., Svedberg, M., and Ståhl, S. 2000. Staphylococcal surface display of metal-binding polyhistidyl peptides. Appl. Environ. Microbiol. 66:1243–1248.CrossRef Samuelson, P.,Wernérus, H., Svedberg, M., and Ståhl, S. 2000. Staphylococcal surface display of metal-binding polyhistidyl peptides. Appl. Environ. Microbiol. 66:1243–1248.CrossRef
Zurück zum Zitat Schiewer, S., and Patil, S. B. 2008. Pectin-rich fruit wastes as biosorbents for heavy metal removal: equilibrium and kinetics. Bioresour. Technol. 99:1896–1903.CrossRef Schiewer, S., and Patil, S. B. 2008. Pectin-rich fruit wastes as biosorbents for heavy metal removal: equilibrium and kinetics. Bioresour. Technol. 99:1896–1903.CrossRef
Zurück zum Zitat Schiewer, S., and Volesky, B. 2000. Biosorption Processes for Heavy Metal Removal. In: D. E. Lovley, ed. Environmental microbe–metal interactions, pp. 329–362. Washington, DC: ASM Press. Schiewer, S., and Volesky, B. 2000. Biosorption Processes for Heavy Metal Removal. In: D. E. Lovley, ed. Environmental microbe–metal interactions, pp. 329–362. Washington, DC: ASM Press.
Zurück zum Zitat Selatnia, A., Bakhti, M. Z., Madani, A., Kertous, L., and Mansouri, Y. 2004a. Biosorption of Cd2+ from aqueous solution by a NaOH-treated bacterial dead Streptomyces rimosus biomass. Hydrometallurgy. 75:11–24. Selatnia, A., Bakhti, M. Z., Madani, A., Kertous, L., and Mansouri, Y. 2004a. Biosorption of Cd2+ from aqueous solution by a NaOH-treated bacterial dead Streptomyces rimosus biomass. Hydrometallurgy. 75:11–24.
Zurück zum Zitat Selatnia, A., Boukazoula, A., Kechid, N., Bakhti, M. Z., and Chergui, A. 2004b. Biosorption of Fe3+ from aqueous solution by a bacterial dead Streptomyces rimosus biomass. Process Biochem. 39:1643–1651.CrossRef Selatnia, A., Boukazoula, A., Kechid, N., Bakhti, M. Z., and Chergui, A. 2004b. Biosorption of Fe3+ from aqueous solution by a bacterial dead Streptomyces rimosus biomass. Process Biochem. 39:1643–1651.CrossRef
Zurück zum Zitat Selatnia, A., Boukazoula, A., Kechid, N., Bakhti, M. Z., Chergui, A., and Kerchich, Y. 2004c. Biosorption of lead (II) from aqueous solution by a bacterial dead Streptomyces rimosus biomass. Biochem. Eng. J. 19:127–135.CrossRef Selatnia, A., Boukazoula, A., Kechid, N., Bakhti, M. Z., Chergui, A., and Kerchich, Y. 2004c. Biosorption of lead (II) from aqueous solution by a bacterial dead Streptomyces rimosus biomass. Biochem. Eng. J. 19:127–135.CrossRef
Zurück zum Zitat Shaker, M. A. 2007. Thermodynamic profile of some heavy metal ions adsorption onto biomaterial surfaces. Am. J. Appl. Sci. 4:605–612.CrossRef Shaker, M. A. 2007. Thermodynamic profile of some heavy metal ions adsorption onto biomaterial surfaces. Am. J. Appl. Sci. 4:605–612.CrossRef
Zurück zum Zitat Sharma, P., Kumari, P., Srivastava, M. M., and Srivastava, S. 2006. Romoval of cadmium from aqueous system by shelled Moringa oleifera Lam. Seed powder. Bioresour. Technol. 97:299–305.CrossRef Sharma, P., Kumari, P., Srivastava, M. M., and Srivastava, S. 2006. Romoval of cadmium from aqueous system by shelled Moringa oleifera Lam. Seed powder. Bioresour. Technol. 97:299–305.CrossRef
Zurück zum Zitat Shevchuk, I. A., and Klimenko, N. I. 2009. Biological features of sorption of U (VII) and strontium ions by Bacillus polymyxa IMV 8910 cells. J. Water Chem. Technol. 31:324–328.CrossRef Shevchuk, I. A., and Klimenko, N. I. 2009. Biological features of sorption of U (VII) and strontium ions by Bacillus polymyxa IMV 8910 cells. J. Water Chem. Technol. 31:324–328.CrossRef
Zurück zum Zitat Silva, R. M. P., Rodríguez, A. A., Montes De Oca, J. M. G., and Moreno, D. C. 2009. Biosorption of chromium, copper, manganese and zinc by Pseudomonas aeruginosa AT18 isolated from a site contaminated with petroleum. Bioresour. Technol. 100:1533–1538CrossRef Silva, R. M. P., Rodríguez, A. A., Montes De Oca, J. M. G., and Moreno, D. C. 2009. Biosorption of chromium, copper, manganese and zinc by Pseudomonas aeruginosa AT18 isolated from a site contaminated with petroleum. Bioresour. Technol. 100:1533–1538CrossRef
Zurück zum Zitat Site, A. D. 2001. Factors affecting sorption of organic compounds in natural sorbent/water systems and sorption coefficients for selected pollutants. A review. J. Phys. Chem. 30:187–439. Site, A. D. 2001. Factors affecting sorption of organic compounds in natural sorbent/water systems and sorption coefficients for selected pollutants. A review. J. Phys. Chem. 30:187–439.
Zurück zum Zitat Sleytr, U., and Beveridge, T. 1999. Bacterial S-layers. Trends. Microbiol. 7:253–260.CrossRef Sleytr, U., and Beveridge, T. 1999. Bacterial S-layers. Trends. Microbiol. 7:253–260.CrossRef
Zurück zum Zitat Sleytr, U., Györvary, E., and Pum, D. 2003. Crystallization of S-layer protein lattices on surfaces and interfaces. Progr. Org. Coating. 47:279–287.CrossRef Sleytr, U., Györvary, E., and Pum, D. 2003. Crystallization of S-layer protein lattices on surfaces and interfaces. Progr. Org. Coating. 47:279–287.CrossRef
Zurück zum Zitat Sobeck, D. C., and Higgins, M. J. 2002. Examination of three theories for mechanisms of cation-induced bioflocculation. Water Res. 36(3):527–538.CrossRef Sobeck, D. C., and Higgins, M. J. 2002. Examination of three theories for mechanisms of cation-induced bioflocculation. Water Res. 36(3):527–538.CrossRef
Zurück zum Zitat Solisio, C., Lodi, A., Converti, A., and Borghi, M. D. 2000. The effect of acid pre-treatment on the biosorption of chromium(III) by Sphaerotilus natans from industrial wastewater. Water Res. 34:3171–3178.CrossRef Solisio, C., Lodi, A., Converti, A., and Borghi, M. D. 2000. The effect of acid pre-treatment on the biosorption of chromium(III) by Sphaerotilus natans from industrial wastewater. Water Res. 34:3171–3178.CrossRef
Zurück zum Zitat Tan, H. K. S., and Spinner, I. H. 1994. Multicomponent ion exchange column dynamics. Can. J. Chem. Eng. 72:330–341.CrossRef Tan, H. K. S., and Spinner, I. H. 1994. Multicomponent ion exchange column dynamics. Can. J. Chem. Eng. 72:330–341.CrossRef
Zurück zum Zitat Tunali, S., Çabuk, A., and Akar, T. 2006. Removal of lead and copper ions from aqueous solutions by bacterial strain isolated from soil. Chem. Eng. J. 115:203–211.CrossRef Tunali, S., Çabuk, A., and Akar, T. 2006. Removal of lead and copper ions from aqueous solutions by bacterial strain isolated from soil. Chem. Eng. J. 115:203–211.CrossRef
Zurück zum Zitat Tuzen, M., Saygi, K. O., Usta, C., and Soylak, M. 2008. Pseudomonas aeruginosa immobilized multiwalled carbon nanotubes as biosorbent for heavy metal ions. Bioresour. Technol. 99:1563–1570.CrossRef Tuzen, M., Saygi, K. O., Usta, C., and Soylak, M. 2008. Pseudomonas aeruginosa immobilized multiwalled carbon nanotubes as biosorbent for heavy metal ions. Bioresour. Technol. 99:1563–1570.CrossRef
Zurück zum Zitat Urrutia, M. M. 1997. General Bacterial Sorption Processes. In: J. Wase and C. Forster (eds). Biosorbents for metal ions, pp. 39–66. London: CRC Press. Urrutia, M. M. 1997. General Bacterial Sorption Processes. In: J. Wase and C. Forster (eds). Biosorbents for metal ions, pp. 39–66. London: CRC Press.
Zurück zum Zitat Uslu, G., and Tanyol, M. 2006. Equilibrium and thermodynamic parameters of single and binary mixture biosorption of lead(II) and copper(II) ions onto Pseudomonas putida: effect of temperature. J. Hazard. Mater. 135:87–93.CrossRef Uslu, G., and Tanyol, M. 2006. Equilibrium and thermodynamic parameters of single and binary mixture biosorption of lead(II) and copper(II) ions onto Pseudomonas putida: effect of temperature. J. Hazard. Mater. 135:87–93.CrossRef
Zurück zum Zitat Uzel, A., and Ozdemir, G. 2009. Metal biosorption capacity of the organic solvent tolerant Pseudomonas fluorescens TEM08. Bioresour. Technol. 100:542–548.CrossRef Uzel, A., and Ozdemir, G. 2009. Metal biosorption capacity of the organic solvent tolerant Pseudomonas fluorescens TEM08. Bioresour. Technol. 100:542–548.CrossRef
Zurück zum Zitat van Hullebusch, E. D., Zandvoort, M. H., and Lens, P. N. L. 2003. Metal immobilisation by biofilms: mechanisms and analytical tools. Rev. Environ. Sci. Biotechnol. 2:9–33.CrossRef van Hullebusch, E. D., Zandvoort, M. H., and Lens, P. N. L. 2003. Metal immobilisation by biofilms: mechanisms and analytical tools. Rev. Environ. Sci. Biotechnol. 2:9–33.CrossRef
Zurück zum Zitat Veglio, F., and Beolchini, F. 1997. Removal of metals by biosorption: a review. Hydrometallurgy. 44:301–316.CrossRef Veglio, F., and Beolchini, F. 1997. Removal of metals by biosorption: a review. Hydrometallurgy. 44:301–316.CrossRef
Zurück zum Zitat Vijaya, Y., Popuri, S. R., Boddu, V. M., and Krishnaiah, A. 2008. Modified chitosan and calcium. Carbohyd. Poly. 72:261–271.CrossRef Vijaya, Y., Popuri, S. R., Boddu, V. M., and Krishnaiah, A. 2008. Modified chitosan and calcium. Carbohyd. Poly. 72:261–271.CrossRef
Zurück zum Zitat Vijayaraghavan, K., and Yun, Y. S. 2008a. Bacterial biosorbents and biosorption. Biotechnol. Adv. 26:266–291.CrossRef Vijayaraghavan, K., and Yun, Y. S. 2008a. Bacterial biosorbents and biosorption. Biotechnol. Adv. 26:266–291.CrossRef
Zurück zum Zitat Vijayaraghavan, K., and Yun, Y. S. 2008b. Biosorption of C.I. Reactive Black 5 from aqueous solution using acid-treated biomass of brown seaweed Laminaria sp. Dyes Pigm. 76:726–732.CrossRef Vijayaraghavan, K., and Yun, Y. S. 2008b. Biosorption of C.I. Reactive Black 5 from aqueous solution using acid-treated biomass of brown seaweed Laminaria sp. Dyes Pigm. 76:726–732.CrossRef
Zurück zum Zitat Vijayaraghavan, K., Jegan, J., Palanivelu, K., and Velan, M. 2004. Removal of nickel(II) ions from aqueous solution using crab shell particles in a packed bed up-flow column. J. Hazard. Mater. 113:223–230.CrossRef Vijayaraghavan, K., Jegan, J., Palanivelu, K., and Velan, M. 2004. Removal of nickel(II) ions from aqueous solution using crab shell particles in a packed bed up-flow column. J. Hazard. Mater. 113:223–230.CrossRef
Zurück zum Zitat Vijayaraghavan, K., Jegan, J., Palanivelu, K., and Velan, M. 2005. Batch and column removal of copper from aqueous solution using a brown marine alga Turbinaria ornata. Chem. Eng. J. 106:177–184.CrossRef Vijayaraghavan, K., Jegan, J., Palanivelu, K., and Velan, M. 2005. Batch and column removal of copper from aqueous solution using a brown marine alga Turbinaria ornata. Chem. Eng. J. 106:177–184.CrossRef
Zurück zum Zitat Vijayaraghavan, K., Palanivelu, K., and Velan, M. 2006. Biosorption of copper(II) and cobalt(II) from aqueous solutions by crab shell particles. Bioresour. Technol. 97:1411–1419.CrossRef Vijayaraghavan, K., Palanivelu, K., and Velan, M. 2006. Biosorption of copper(II) and cobalt(II) from aqueous solutions by crab shell particles. Bioresour. Technol. 97:1411–1419.CrossRef
Zurück zum Zitat Vilar, V. J. P., Botelho, C. M. S., and Boaventura, R. A. R. 2008. Copper removal by algae Gelidium, agar extraction algal waste and granulated algal waste: kinetics and equilibrium. Bioresour. Technol. 99:750–762.CrossRef Vilar, V. J. P., Botelho, C. M. S., and Boaventura, R. A. R. 2008. Copper removal by algae Gelidium, agar extraction algal waste and granulated algal waste: kinetics and equilibrium. Bioresour. Technol. 99:750–762.CrossRef
Zurück zum Zitat Volesky, B. 1987. Biosorbents for metal recovery. TIBTECH. 5:96–101. Volesky, B. 1987. Biosorbents for metal recovery. TIBTECH. 5:96–101.
Zurück zum Zitat Volesky, B. 2001. Detoxification of metal-bearing effluents: biosorption for the next century. Hydrometallurgy 59:203–216.CrossRef Volesky, B. 2001. Detoxification of metal-bearing effluents: biosorption for the next century. Hydrometallurgy 59:203–216.CrossRef
Zurück zum Zitat Volesky, B., Weber, J., and Park, J. M. 2003. Continuous-flow metal biosorption in a regenerable Sargassum column. Water Res. 37:297–306.CrossRef Volesky, B., Weber, J., and Park, J. M. 2003. Continuous-flow metal biosorption in a regenerable Sargassum column. Water Res. 37:297–306.CrossRef
Zurück zum Zitat Vullo, D. L., Ceretti, H. M., Ramírez, S., and Zalts, A. 2003. Metal retention in calcium alginate (Retencio´n de metales en gel de alginato de calcio). VI Society of Environmental Toxicology and Chemistry Latinoamerican Annual Meeting (SETAC), Buenos Aires, Argentina. Vullo, D. L., Ceretti, H. M., Ramírez, S., and Zalts, A. 2003. Metal retention in calcium alginate (Retencio´n de metales en gel de alginato de calcio). VI Society of Environmental Toxicology and Chemistry Latinoamerican Annual Meeting (SETAC), Buenos Aires, Argentina.
Zurück zum Zitat Vullo, D. L., Ceretti, H. M., Daniel, M. A., Ramirez, S. A. M., and Zalts, A. 2008. Cadmium, zinc and copper biosorption mediated by Pseudomonas veronii 2E. Bioresour. Technol. 99:5574–5581.CrossRef Vullo, D. L., Ceretti, H. M., Daniel, M. A., Ramirez, S. A. M., and Zalts, A. 2008. Cadmium, zinc and copper biosorption mediated by Pseudomonas veronii 2E. Bioresour. Technol. 99:5574–5581.CrossRef
Zurück zum Zitat Wang, J. L. 2002. Microbial immobilization techniques and water pollution technology. Beijing: Science Press. 233–248. Wang, J. L. 2002. Microbial immobilization techniques and water pollution technology. Beijing: Science Press. 233–248.
Zurück zum Zitat Wang, X., Qin, Y., and Li, Z. 2006a. Biosorption of zinc from aqueous solutions by rice bran: kinetics and equilibrium studies. Sep. Sci. Technol. 41:747–756.CrossRef Wang, X., Qin, Y., and Li, Z. 2006a. Biosorption of zinc from aqueous solutions by rice bran: kinetics and equilibrium studies. Sep. Sci. Technol. 41:747–756.CrossRef
Zurück zum Zitat Wang, X., Xia, S., Chen, L., Zhao, J., Chovelon, J., and Nicole, J. 2006b. Biosorption of cadmium(I1) and lead(I1) ions from aqueous solutions onto dried activated sludge. J. Environ. Sci. 18:840–844.CrossRef Wang, X., Xia, S., Chen, L., Zhao, J., Chovelon, J., and Nicole, J. 2006b. Biosorption of cadmium(I1) and lead(I1) ions from aqueous solutions onto dried activated sludge. J. Environ. Sci. 18:840–844.CrossRef
Zurück zum Zitat Won, S. W., and Yun, Y. S. 2008. Biosorptive removal of Reactive Yellow 2 using waste biomass from lysine fermentation process. Dyes Pigm. 76:502–507.CrossRef Won, S. W., and Yun, Y. S. 2008. Biosorptive removal of Reactive Yellow 2 using waste biomass from lysine fermentation process. Dyes Pigm. 76:502–507.CrossRef
Zurück zum Zitat Xiangliang, P., Jianlong, W., and Daoyong, Z. 2005. Biosorption of Pb(II) by Pleurotus ostreatus immobilized in calcium alginate gel. Process. Biochem. 40:2799–28803.CrossRef Xiangliang, P., Jianlong, W., and Daoyong, Z. 2005. Biosorption of Pb(II) by Pleurotus ostreatus immobilized in calcium alginate gel. Process. Biochem. 40:2799–28803.CrossRef
Zurück zum Zitat Xie, S., Yang, J., Chen, C., Zhang, X., Wang, Q., and Zhang, C. 2008. Study on biosorption kinetics and thermodynamics of uranium by Citrobacter freudii. J. Environ. Radioact. 99:126–133.CrossRef Xie, S., Yang, J., Chen, C., Zhang, X., Wang, Q., and Zhang, C. 2008. Study on biosorption kinetics and thermodynamics of uranium by Citrobacter freudii. J. Environ. Radioact. 99:126–133.CrossRef
Zurück zum Zitat Xu, H., Liu, Y., and Tay, J. H. 2006. Effect of pH on nickel biosorption by aerobic granular sludge. Bioresour. Technol. 97:359–363.CrossRef Xu, H., Liu, Y., and Tay, J. H. 2006. Effect of pH on nickel biosorption by aerobic granular sludge. Bioresour. Technol. 97:359–363.CrossRef
Zurück zum Zitat Yan, Z., Xuliang, F., Zhilong, Y., Yahong, L., and Weimin, C. 2008. Biosorption of Cu(II) on extracellular polymers from Bacillus sp. F19. J. Environ. Sci. 20:1288–1293.CrossRef Yan, Z., Xuliang, F., Zhilong, Y., Yahong, L., and Weimin, C. 2008. Biosorption of Cu(II) on extracellular polymers from Bacillus sp. F19. J. Environ. Sci. 20:1288–1293.CrossRef
Zurück zum Zitat Yang, J., and Volesky, B. 1996. Intraparticle diffusivity of Cd ions in a new biosorbent material. J. Chem. Technol. Biotechnol. 66:355–364.CrossRef Yang, J., and Volesky, B. 1996. Intraparticle diffusivity of Cd ions in a new biosorbent material. J. Chem. Technol. Biotechnol. 66:355–364.CrossRef
Zurück zum Zitat Yee, N., and Fein, J. B. 2001. Cd adsorption onto bacterial surfaces: a universal adsorption edge? Geochim. Cosmochim. Acta. 65:2037–2042.CrossRef Yee, N., and Fein, J. B. 2001. Cd adsorption onto bacterial surfaces: a universal adsorption edge? Geochim. Cosmochim. Acta. 65:2037–2042.CrossRef
Zurück zum Zitat Yilmaz, E. I., and Ensari, N. Y. 2005. Cadmium biosorption by Bacillus circulans strain EB1. World J. Microbiol. Biotechnol. 21:777–779.CrossRef Yilmaz, E. I., and Ensari, N. Y. 2005. Cadmium biosorption by Bacillus circulans strain EB1. World J. Microbiol. Biotechnol. 21:777–779.CrossRef
Zurück zum Zitat Yu, J., Tong, M. S., and Li, X. B. 2007. A simple method to prepare poly(amic acid)-modified biomass for enhancement of lead and cadmium adsorption. Biochem. Eng. J. 33:126–133.CrossRef Yu, J., Tong, M. S., and Li, X. B. 2007. A simple method to prepare poly(amic acid)-modified biomass for enhancement of lead and cadmium adsorption. Biochem. Eng. J. 33:126–133.CrossRef
Zurück zum Zitat Zamil, S., Ahmad, S. S., Choi, M. H., Park, J. Y., and Yoon S. C. 2009. Correlating metal ionic characteristics with biosorption capacity of Staphylococcus saprophyticus BMSZ711 using QICAR model. Bioresour. Technol. 100:1895–1902.CrossRef Zamil, S., Ahmad, S. S., Choi, M. H., Park, J. Y., and Yoon S. C. 2009. Correlating metal ionic characteristics with biosorption capacity of Staphylococcus saprophyticus BMSZ711 using QICAR model. Bioresour. Technol. 100:1895–1902.CrossRef
Zurück zum Zitat Zhao, M., Duncan, R., and Van Hille, R. P. 1999. Removal and recovery of zinc from solution and electroplating effluent using Azolla filiculoides. Water Res. 33:1516–1522.CrossRef Zhao, M., Duncan, R., and Van Hille, R. P. 1999. Removal and recovery of zinc from solution and electroplating effluent using Azolla filiculoides. Water Res. 33:1516–1522.CrossRef
Zurück zum Zitat Zhao, X. W., Zhou, M. H., Li, Q. B., Lu, Y. H., He, N., Sun, D. H., and Deng, X. 2005. Simultaneous mercury bioaccumulation and cell propagation by genetically engineered Escherichia coli. Process Biochem. 40:1611–1616.CrossRef Zhao, X. W., Zhou, M. H., Li, Q. B., Lu, Y. H., He, N., Sun, D. H., and Deng, X. 2005. Simultaneous mercury bioaccumulation and cell propagation by genetically engineered Escherichia coli. Process Biochem. 40:1611–1616.CrossRef
Zurück zum Zitat Zhou, M., Liu, Y., Zeng, G., Li. X., Xu, W., and Fan, T. 2007. Kinetic and equilibrium studies of Cr (VI) biosorption by dead Bacillus licheniformis biomass. World J. Microbiol. Biotechnol. 23:43–48.CrossRef Zhou, M., Liu, Y., Zeng, G., Li. X., Xu, W., and Fan, T. 2007. Kinetic and equilibrium studies of Cr (VI) biosorption by dead Bacillus licheniformis biomass. World J. Microbiol. Biotechnol. 23:43–48.CrossRef
Zurück zum Zitat Ziagova, M., Dimitriadis, G., Aslanidou, D., Papaioannou, X., Tzannetaki, E. L., and Liakopoulou-Kyriakides, M. 2007. Comparative study of Cd(II) and Cr(VI) biosorption on Staphylococcus xylosus and Pseudomonas sp. in single and binary mixtures. Bioresour. Technol. 98:2859–2865.CrossRef Ziagova, M., Dimitriadis, G., Aslanidou, D., Papaioannou, X., Tzannetaki, E. L., and Liakopoulou-Kyriakides, M. 2007. Comparative study of Cd(II) and Cr(VI) biosorption on Staphylococcus xylosus and Pseudomonas sp. in single and binary mixtures. Bioresour. Technol. 98:2859–2865.CrossRef
Zurück zum Zitat Zouboulis, A. I., Rousou, E. G., Matis, K. A., and Hancock, I. C. 1999. Removal of toxic metals from aqueous mixtures: Part 1. Biosorption. J. Chem. Tech. Biotechnol. 74:429–436.CrossRef Zouboulis, A. I., Rousou, E. G., Matis, K. A., and Hancock, I. C. 1999. Removal of toxic metals from aqueous mixtures: Part 1. Biosorption. J. Chem. Tech. Biotechnol. 74:429–436.CrossRef
Zurück zum Zitat Zouboulis, A. I., Loukidou, M. X., and Matis, K. A. 2004. Biosorption of toxic metals from aqueous solutions by bacteria strains isolated from metal-polluted soils. Process Biochem. 39:909–916.CrossRef Zouboulis, A. I., Loukidou, M. X., and Matis, K. A. 2004. Biosorption of toxic metals from aqueous solutions by bacteria strains isolated from metal-polluted soils. Process Biochem. 39:909–916.CrossRef
Metadaten
Titel
Bacterial Biosorption: A Technique for Remediation of Heavy Metals
verfasst von
Mohd Ikram Ansari
Farhana Masood
Abdul Malik
Copyright-Jahr
2011
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4419-7931-5_12