Skip to main content
Erschienen in: Autonomous Agents and Multi-Agent Systems 5/2017

10.03.2017

Balancing exploration and exploitation in incomplete Min/Max-sum inference for distributed constraint optimization

verfasst von: Roie Zivan, Tomer Parash, Liel Cohen, Hilla Peled, Steven Okamoto

Erschienen in: Autonomous Agents and Multi-Agent Systems | Ausgabe 5/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Distributed Constraint Optimization Problems (DCOPs) are NP-hard and therefore the number of studies that consider incomplete algorithms for solving them is growing. Specifically, the Max-sum algorithm has drawn attention in recent years and has been applied to a number of realistic applications. Unfortunately, in many cases Max-sum does not produce high-quality solutions. More specifically, Max-sum does not converge and explores solutions of low quality when run on problems whose constraint graph representation contains multiple cycles of different sizes. In this paper we advance the state-of-the-art in incomplete algorithms for DCOPs by: (1) proposing a version of the Max-sum algorithm that operates on an alternating directed acyclic graph (Max-sum_AD), which guarantees convergence in linear time; (2) solving a major weakness of Max-sum and Max-sum_AD that causes inconsistent costs/utilities to be propagated and affect the assignment selection, by introducing value propagation to Max-sum_AD (Max-sum_ADVP); and (3) proposing exploration heuristic methods that evidently improve the algorithms performance further. We prove that Max-sum_ADVP converges to monotonically improving states after each change of direction, and that it is guaranteed to converge in pseudo-polynomial time to a stable solution that does not change with further changes of direction. Our empirical study reveals a large improvement in the quality of the solutions produced by Max-sum_ADVP on various benchmarks, compared to the solutions produced by the standard Max-sum algorithm, Bounded Max-sum and Max-sum_AD with no value propagation. It is found to be the best guaranteed convergence inference algorithm for DCOPs. The exploration methods we propose for Max-sum_ADVP improve its performance further. However, anytime results demonstrate that their exploration level is not as efficient as a version of Max-sum, which uses Damping.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Following [7] we use the terms “variable-node” and “function-node” to refer to nodes in the factor graph corresponding to variables and constraints, respectively.
 
2
In contrast to previous papers on Max-sum, we present it using pseudo-code. This is following standard DCOP literature, e.g., [22, 26, 41]. Nevertheless, only the presentation is different; the algorithm itself is identical to the algorithm presented in [7, 30].
 
3
We demonstrate the phenomenon for Max-sum_AD since it is easier to follow. In standard Max-sum, such inconsistent information concerning the conflicting assignment of some node is propagated in all directions and fed back to the node itself through cycles.
 
4
We note that in standard Max-sum, the use of VP does not guarantee monotonicity since neighboring agents can replace assignments concurrently (as in DSA).
 
5
We are aware that in the literature there exist different versions of simulated annealing. We have implemented a variety of them and present the most successful.
 
Literatur
1.
Zurück zum Zitat Aji, S. M., & McEliece, R. J. (2000). The generalized distributive law. IEEE Transactions on Information Theory, 46(2), 325–343.MathSciNetCrossRefMATH Aji, S. M., & McEliece, R. J. (2000). The generalized distributive law. IEEE Transactions on Information Theory, 46(2), 325–343.MathSciNetCrossRefMATH
2.
Zurück zum Zitat Arshad, M., & Silaghi, M. C. (2004). Distributed simulated annealing. Distributed constraint problem solving and reasoning in multi-agent systems, frontiers in artificial intelligence and applications series, 112 November 2004. Arshad, M., & Silaghi, M. C. (2004). Distributed simulated annealing. Distributed constraint problem solving and reasoning in multi-agent systems, frontiers in artificial intelligence and applications series, 112 November 2004.
3.
Zurück zum Zitat Bejar, R., Domshlak, C., Fernandez, C., Gomes, K., Krishnamachari, B., Selman, B., et al. (2005). Sensor networks and distributed CSP: Communication, computation and complexity. Artificial Intelligence, 161(1–2), 117–148.MathSciNetCrossRefMATH Bejar, R., Domshlak, C., Fernandez, C., Gomes, K., Krishnamachari, B., Selman, B., et al. (2005). Sensor networks and distributed CSP: Communication, computation and complexity. Artificial Intelligence, 161(1–2), 117–148.MathSciNetCrossRefMATH
4.
Zurück zum Zitat Brito, I., & Meseguer, P. (2010). Improving dpop with function filtering. In AAMAS (pp. 141–148). Brito, I., & Meseguer, P. (2010). Improving dpop with function filtering. In AAMAS (pp. 141–148).
5.
Zurück zum Zitat Brito, I., Meisels, A., Meseguer, P., & Zivan, R. (2009). Distributed constraint satisfaction with partially known constraints. Constraints, 14(2), 199–234.MathSciNetCrossRefMATH Brito, I., Meisels, A., Meseguer, P., & Zivan, R. (2009). Distributed constraint satisfaction with partially known constraints. Constraints, 14(2), 199–234.MathSciNetCrossRefMATH
6.
7.
Zurück zum Zitat Farinelli, A., Rogers, A., Petcu, A., & Jennings, N. R. (2008). Decentralized coordination of low-power embedded devices using the max-sum algorithm. In AAMAS (pp. 639–646). Farinelli, A., Rogers, A., Petcu, A., & Jennings, N. R. (2008). Decentralized coordination of low-power embedded devices using the max-sum algorithm. In AAMAS (pp. 639–646).
8.
Zurück zum Zitat Gershman, A., Grubshtein, A., Rokach, L., Meisels, A., & Zivan, R. (2008). Scheduling meetings by agents. In DCR workshop at AAMAS 2008, Estoril, Portugal, May. Gershman, A., Grubshtein, A., Rokach, L., Meisels, A., & Zivan, R. (2008). Scheduling meetings by agents. In DCR workshop at AAMAS 2008, Estoril, Portugal, May.
9.
Zurück zum Zitat Gershman, A., Meisels, A., & Zivan, R. (2009). Asynchronous forward bounding. Journal of Artificial Intelligence Research, 34, 25–46.MathSciNetMATH Gershman, A., Meisels, A., & Zivan, R. (2009). Asynchronous forward bounding. Journal of Artificial Intelligence Research, 34, 25–46.MathSciNetMATH
10.
Zurück zum Zitat Globerson, A., & Jaakkola, T. (2007). Fixing max-product: Convergent message passing algorithms for map lp-relaxations. In NIPS. Globerson, A., & Jaakkola, T. (2007). Fixing max-product: Convergent message passing algorithms for map lp-relaxations. In NIPS.
11.
Zurück zum Zitat Hatano, D., & Hirayama, K. (2013). Deqed: An efficient divide-and-coordinate algorithm for dcop. In IJCAI. Hatano, D., & Hirayama, K. (2013). Deqed: An efficient divide-and-coordinate algorithm for dcop. In IJCAI.
12.
Zurück zum Zitat Hazan, T., & Shashua, A. (2010). Norm-product belief propagation: Primal-dual message-passing for approximate inference. IEEE Transactions on Information Theory, 56(12), 6294–6316.MathSciNetCrossRef Hazan, T., & Shashua, A. (2010). Norm-product belief propagation: Primal-dual message-passing for approximate inference. IEEE Transactions on Information Theory, 56(12), 6294–6316.MathSciNetCrossRef
13.
Zurück zum Zitat Heras, F., & Larrosa, J. (2006). Intelligent variable orderings and re-orderings in dac-based solvers for WCSP. Journal of Heuristics, 12(4–5), 287–306.CrossRefMATH Heras, F., & Larrosa, J. (2006). Intelligent variable orderings and re-orderings in dac-based solvers for WCSP. Journal of Heuristics, 12(4–5), 287–306.CrossRefMATH
14.
Zurück zum Zitat Hirayama, K., & Yokoo, M. (2000). An approach to over-constrained distributed constraint satisfaction problems: Distributed hierarchical constraint satisfaction. In Proceedings of the third international joint conference on autonomous agents and multiagent systems (pp. 135–142). Hirayama, K., & Yokoo, M. (2000). An approach to over-constrained distributed constraint satisfaction problems: Distributed hierarchical constraint satisfaction. In Proceedings of the third international joint conference on autonomous agents and multiagent systems (pp. 135–142).
15.
Zurück zum Zitat Khot, S. (2002). On the power of unique 2-prover 1-round games. In Proceedings of the thirty-fourth annual ACM symposium on theory of computing (pp. 767–775). Khot, S. (2002). On the power of unique 2-prover 1-round games. In Proceedings of the thirty-fourth annual ACM symposium on theory of computing (pp. 767–775).
16.
Zurück zum Zitat Kiekintveld, C., Yin, Z., Kumar, A., & Tambe, M. (2010). Asynchronous algorithms for approximate distributed constraint optimization with quality bounds. In AAMAS (pp. 133–140). Kiekintveld, C., Yin, Z., Kumar, A., & Tambe, M. (2010). Asynchronous algorithms for approximate distributed constraint optimization with quality bounds. In AAMAS (pp. 133–140).
17.
Zurück zum Zitat Kschischang, F. R., Frey, B. J., & Loeliger, H. A. (2001). Factor graphs and the sum-product algorithm. IEEE Transactions on Information Theory, 47(2), 181–208.MathSciNetCrossRefMATH Kschischang, F. R., Frey, B. J., & Loeliger, H. A. (2001). Factor graphs and the sum-product algorithm. IEEE Transactions on Information Theory, 47(2), 181–208.MathSciNetCrossRefMATH
18.
19.
Zurück zum Zitat Lazic, N., Frey, B., & Aarabi, P. (2010). Solving the uncapacitated facility location problem using message passing algorithms. In International conference on artificial intelligence and statistics (pp. 429–436). Lazic, N., Frey, B., & Aarabi, P. (2010). Solving the uncapacitated facility location problem using message passing algorithms. In International conference on artificial intelligence and statistics (pp. 429–436).
20.
Zurück zum Zitat Maheswaran, R. T., Pearce, J. P., & Tambe, M. (2004). Distributed algorithms for dcop: A graphical-game-based approach. In PDCS) (pp. 432–439), September 2004. Maheswaran, R. T., Pearce, J. P., & Tambe, M. (2004). Distributed algorithms for dcop: A graphical-game-based approach. In PDCS) (pp. 432–439), September 2004.
21.
Zurück zum Zitat Maheswaran, R. T., Tambe, M., Bowring, E., Pearce, J. P., & Varakantham, P. (2004). Taking DCOP to the real world: Efficient complete solutions for distributed multi-event scheduling. In 3rd International joint conference on autonomous agents and multiagent systems (AAMAS 2004), 19–23 August 2004, New York (pp. 310–317). Maheswaran, R. T., Tambe, M., Bowring, E., Pearce, J. P., & Varakantham, P. (2004). Taking DCOP to the real world: Efficient complete solutions for distributed multi-event scheduling. In 3rd International joint conference on autonomous agents and multiagent systems (AAMAS 2004), 19–23 August 2004, New York (pp. 310–317).
22.
Zurück zum Zitat Modi, P. J., Shen, W., Tambe, M., & Yokoo, M. (2005). Adopt: asynchronous distributed constraints optimizationwith quality guarantees. Artificial Intelligence, 161(1–2), 149–180.MathSciNetCrossRefMATH Modi, P. J., Shen, W., Tambe, M., & Yokoo, M. (2005). Adopt: asynchronous distributed constraints optimizationwith quality guarantees. Artificial Intelligence, 161(1–2), 149–180.MathSciNetCrossRefMATH
23.
Zurück zum Zitat Netzer, A., Grubshtein, A., & Meisels, A. (2012). Concurrent forward bounding for distributed constraint optimization problems. Artificial Intelligence, 193, 186–216.MathSciNetCrossRefMATH Netzer, A., Grubshtein, A., & Meisels, A. (2012). Concurrent forward bounding for distributed constraint optimization problems. Artificial Intelligence, 193, 186–216.MathSciNetCrossRefMATH
24.
Zurück zum Zitat Okimoto, T., Joe, Y., Iwasaki, A., Yokoo, M., & Faltings, B. (2011). Pseudo-tree-based incomplete algorithm for distributed constraint optimization with quality bounds. In J. Lee, (Ed.), CP 2011, LNCS 6876 (pp. 660–674). Okimoto, T., Joe, Y., Iwasaki, A., Yokoo, M., & Faltings, B. (2011). Pseudo-tree-based incomplete algorithm for distributed constraint optimization with quality bounds. In J. Lee, (Ed.), CP 2011, LNCS 6876 (pp. 660–674).
25.
Zurück zum Zitat Pearce, J. P., & Tambe, M. (2007). Quality guarantees on k-optimal solutions for distributed constraint optimization problems. In IJCAI (pp. 1446–1451), Hyderabad, India, January 2007. Pearce, J. P., & Tambe, M. (2007). Quality guarantees on k-optimal solutions for distributed constraint optimization problems. In IJCAI (pp. 1446–1451), Hyderabad, India, January 2007.
26.
Zurück zum Zitat Petcu, A., & Faltings, B. (2005). A scalable method for multiagent constraint optimization. In IJCAI (pp. 266–271). Petcu, A., & Faltings, B. (2005). A scalable method for multiagent constraint optimization. In IJCAI (pp. 266–271).
27.
Zurück zum Zitat Petcu, A., & Faltings, B. (2005). Approximations in distributed optimization. In P. van Beek (Ed.), CP 2005, LNCS 3709 (pp. 802–806). Petcu, A., & Faltings, B. (2005). Approximations in distributed optimization. In P. van Beek (Ed.), CP 2005, LNCS 3709 (pp. 802–806).
28.
Zurück zum Zitat Ramchurn, S. D., Farinelli, A., Macarthur, K. S., & Jennings, N. R. (2010). Decentralized coordination in robocup rescue. The Computer Journal, 53(9), 1447–1461.CrossRef Ramchurn, S. D., Farinelli, A., Macarthur, K. S., & Jennings, N. R. (2010). Decentralized coordination in robocup rescue. The Computer Journal, 53(9), 1447–1461.CrossRef
29.
Zurück zum Zitat Reeves, C. R. (Ed.). (1993). Modern heuristic techniques for combinatorial problems. New York, NY: Wiley.MATH Reeves, C. R. (Ed.). (1993). Modern heuristic techniques for combinatorial problems. New York, NY: Wiley.MATH
30.
Zurück zum Zitat Rogers, A., Farinelli, A., Stranders, R., & Jennings, N. R. (2011). Bounded approximate decentralized coordination via the max-sum algorithm. Artificial Intelligence, 175(2), 730–759.MathSciNetCrossRefMATH Rogers, A., Farinelli, A., Stranders, R., & Jennings, N. R. (2011). Bounded approximate decentralized coordination via the max-sum algorithm. Artificial Intelligence, 175(2), 730–759.MathSciNetCrossRefMATH
31.
Zurück zum Zitat Rollon, E., & Larrosa, J. (2012). Improved bounded max-sum for distributed constraint optimization. In CP (pp. 624–632). Rollon, E., & Larrosa, J. (2012). Improved bounded max-sum for distributed constraint optimization. In CP (pp. 624–632).
32.
Zurück zum Zitat Smith, M., & Mailler, R. (2010). Getting what you pay for: Is exploration in distributed hill climbing really worth it? In IAT (pp. 319–326). Smith, M., & Mailler, R. (2010). Getting what you pay for: Is exploration in distributed hill climbing really worth it? In IAT (pp. 319–326).
33.
Zurück zum Zitat Sontag, D., Meltzer, T., Globerson, A., Jaakkola, T., & Weiss, Y. (2008). Tightening lp relaxations for map using message passing. In UAI (pp. 503–510). Sontag, D., Meltzer, T., Globerson, A., Jaakkola, T., & Weiss, Y. (2008). Tightening lp relaxations for map using message passing. In UAI (pp. 503–510).
34.
Zurück zum Zitat Stranders, R., Farinelli, A., Rogers, A., & Jennings, N. R. (2009). Decentralized coordination of continuously valued control parameters using the max-sum algorithm. In AAMAS (pp. 601–608). Stranders, R., Farinelli, A., Rogers, A., & Jennings, N. R. (2009). Decentralized coordination of continuously valued control parameters using the max-sum algorithm. In AAMAS (pp. 601–608).
35.
Zurück zum Zitat Teacy, W. T. L., Farinelli, A., Grabham, N. J., Padhy, P., Rogers, A., & Jennings, N. R. (2008). Max-sum decentralized coordination for sensor systems. In AAMAS (pp. 1697–1698). Teacy, W. T. L., Farinelli, A., Grabham, N. J., Padhy, P., Rogers, A., & Jennings, N. R. (2008). Max-sum decentralized coordination for sensor systems. In AAMAS (pp. 1697–1698).
36.
Zurück zum Zitat Vinyals, M., Pujol, M., Rodríguez-Aguilar, J. A., & Cerquides, J. (2010). Divide-and-coordinate: Dcops by agreement. In AAMAS (pp. 149–156). Vinyals, M., Pujol, M., Rodríguez-Aguilar, J. A., & Cerquides, J. (2010). Divide-and-coordinate: Dcops by agreement. In AAMAS (pp. 149–156).
37.
Zurück zum Zitat Vinyals, M., Rodríguez-Aguilar, J. A., & Cerquides, J. (2011). Constructing a unifying theory of dynamic programming dcop algorithms via the generalized distributive law. Autonomous Agents and Multi-Agent Systems, 22(3), 439–464.CrossRef Vinyals, M., Rodríguez-Aguilar, J. A., & Cerquides, J. (2011). Constructing a unifying theory of dynamic programming dcop algorithms via the generalized distributive law. Autonomous Agents and Multi-Agent Systems, 22(3), 439–464.CrossRef
38.
Zurück zum Zitat Vinyals, M., Shieh, E., Cerquides, J., Rodriguez-Aguilar, J. A., Yin, Z., Tambe, M., & Bowring, E. (2011). Quality guarantees for region optimal dcop algorithms. In AAMAS (pp. 133–140). Tapei. Vinyals, M., Shieh, E., Cerquides, J., Rodriguez-Aguilar, J. A., Yin, Z., Tambe, M., & Bowring, E. (2011). Quality guarantees for region optimal dcop algorithms. In AAMAS (pp. 133–140). Tapei.
39.
Zurück zum Zitat Yanover, C., Meltzer, T., & Weiss, Y. (2006). Linear programming relaxations and belief propagation: An empirical study. Journal of Machine Learning Research, 7, 1887–1907.MathSciNetMATH Yanover, C., Meltzer, T., & Weiss, Y. (2006). Linear programming relaxations and belief propagation: An empirical study. Journal of Machine Learning Research, 7, 1887–1907.MathSciNetMATH
40.
Zurück zum Zitat Yeoh, W., Felner, A., & Koenig, S. (2010). Bnb-adopt: An asynchronous branch-and-bound dcop algorithm. Artificial Intelligence Research (JAIR), 38, 85–133.MATH Yeoh, W., Felner, A., & Koenig, S. (2010). Bnb-adopt: An asynchronous branch-and-bound dcop algorithm. Artificial Intelligence Research (JAIR), 38, 85–133.MATH
41.
Zurück zum Zitat Zhang, W., Xing, Z., Wang, G., & Wittenburg, L. (2005). Distributed stochastic search and distributed breakout: Properties, comparishon and applications to constraints optimization problems in sensor networks. Artificial Intelligence, 161(1–2), 55–88.MathSciNetCrossRefMATH Zhang, W., Xing, Z., Wang, G., & Wittenburg, L. (2005). Distributed stochastic search and distributed breakout: Properties, comparishon and applications to constraints optimization problems in sensor networks. Artificial Intelligence, 161(1–2), 55–88.MathSciNetCrossRefMATH
42.
Zurück zum Zitat Zivan, R., Okamoto, S., & Peled, H. (2014). Explorative anytime local search for distributed constraint optimization. Artificial Intelligence, 212, 1–26. Zivan, R., Okamoto, S., & Peled, H. (2014). Explorative anytime local search for distributed constraint optimization. Artificial Intelligence, 212, 1–26.
43.
Zurück zum Zitat Zivan, R., & Peled, H. (2012). Max/min-sum distributed constraint optimization through value propagation on an alternating DAG. In AAMAS (pp. 265–272). Zivan, R., & Peled, H. (2012). Max/min-sum distributed constraint optimization through value propagation on an alternating DAG. In AAMAS (pp. 265–272).
44.
Zurück zum Zitat Zivan, R., Yedidsion, H., Okamoto, S., Glinton, R., & Sycara, K. P. (2015). Distributed constraint optimization for teams of mobile sensing agents. Autonomous Agents and Multi-Agent Systems, 29(3), 495–536.CrossRef Zivan, R., Yedidsion, H., Okamoto, S., Glinton, R., & Sycara, K. P. (2015). Distributed constraint optimization for teams of mobile sensing agents. Autonomous Agents and Multi-Agent Systems, 29(3), 495–536.CrossRef
Metadaten
Titel
Balancing exploration and exploitation in incomplete Min/Max-sum inference for distributed constraint optimization
verfasst von
Roie Zivan
Tomer Parash
Liel Cohen
Hilla Peled
Steven Okamoto
Publikationsdatum
10.03.2017
Verlag
Springer US
Erschienen in
Autonomous Agents and Multi-Agent Systems / Ausgabe 5/2017
Print ISSN: 1387-2532
Elektronische ISSN: 1573-7454
DOI
https://doi.org/10.1007/s10458-017-9360-1

Weitere Artikel der Ausgabe 5/2017

Autonomous Agents and Multi-Agent Systems 5/2017 Zur Ausgabe