Skip to main content
Erschienen in: Wireless Networks 2/2018

01.08.2016

Band notched UWB circular monopole antenna with inductance enhanced modified mushroom EBG structures

verfasst von: Naveen Jaglan, Samir Dev Gupta, Binod Kumar Kanaujia, Shweta Srivastava

Erschienen in: Wireless Networks | Ausgabe 2/2018

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Circular monopole antenna for ultra-wide band applications with notch band transition from WLAN to WiMAX is presented. The proposed antenna rejects WiMAX band (3.3–3.8 GHz). Antennas utilises modified mushroom-type electromagnetic band gap (EBG) structures to achieve band-notched designs. The proposed inductance enhanced modified EBG structures are 34 % compact than the conventional mushroom EBG structures. The band notched antenna designs using EBG structures have advantages like notch-frequency tuning, antenna design independent approach and omnidirectional radiation pattern. The step wise effect of inductance enhancement and tuning of notch from WLAN band (5–6 GHz) to WiMAX band is shown. Effect of variation of EBG structure parameters on which notched frequency depends is investigated. The proposed antenna has been fabricated on low cost FR4 substrate with overall dimensions as (42 × 50 × 1.6) mm3. Measured results are in good agreement with simulated ones.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Federal Communications Commission. (2002). Revision of part 15 of the commission’s rules regarding ultra-wideband transmission systems. Tech. rep. ET-Docket 98-153, FCC02-48, Federal Communications Commission (FCC), Washington, DC, USA. Federal Communications Commission. (2002). Revision of part 15 of the commission’s rules regarding ultra-wideband transmission systems. Tech. rep. ET-Docket 98-153, FCC02-48, Federal Communications Commission (FCC), Washington, DC, USA.
2.
Zurück zum Zitat Liang, J., Chiau, C. C., Chen, X., & Parini, C. G. (2004). Printed circular disc monopole antenna for ultra-wideband applications. Electronics Letters, 40(20), 1246–1248.CrossRef Liang, J., Chiau, C. C., Chen, X., & Parini, C. G. (2004). Printed circular disc monopole antenna for ultra-wideband applications. Electronics Letters, 40(20), 1246–1248.CrossRef
3.
Zurück zum Zitat Cho, Y. J., Kim, K. H., Choi, D. H., Lee, S. S., & Park, S. O. (2006). A miniature UWB planar monopole antenna with 5-GHz band-rejection filter and the time-domain characteristics. IEEE Transactions on Antennas and Propagation, 54(5), 1453–1460.CrossRef Cho, Y. J., Kim, K. H., Choi, D. H., Lee, S. S., & Park, S. O. (2006). A miniature UWB planar monopole antenna with 5-GHz band-rejection filter and the time-domain characteristics. IEEE Transactions on Antennas and Propagation, 54(5), 1453–1460.CrossRef
4.
Zurück zum Zitat Lee, W. S., Kim, D. Z., Kim, K. J., & Yu, J. W. (2006). Wideband planar monopole antennas with dual band-notched characteristics. IEEE Transactions on Microwave Theory and Techniques, 54(6), 2800–2806.CrossRef Lee, W. S., Kim, D. Z., Kim, K. J., & Yu, J. W. (2006). Wideband planar monopole antennas with dual band-notched characteristics. IEEE Transactions on Microwave Theory and Techniques, 54(6), 2800–2806.CrossRef
5.
Zurück zum Zitat Chung, K., Kim, J., & Choi, J. (2005). Wideband microstrip-FED monopole antenna having frequency band-notch function. IEEE Microwave and Wireless Components Letters, 15(11), 766–768.CrossRef Chung, K., Kim, J., & Choi, J. (2005). Wideband microstrip-FED monopole antenna having frequency band-notch function. IEEE Microwave and Wireless Components Letters, 15(11), 766–768.CrossRef
6.
Zurück zum Zitat Kim, Y., & Kwon, D. H. (2004). CPW-FED planar ultra-wideband antenna having a frequency band notch function. Electronics Letters, 40(7), 403–405.CrossRef Kim, Y., & Kwon, D. H. (2004). CPW-FED planar ultra-wideband antenna having a frequency band notch function. Electronics Letters, 40(7), 403–405.CrossRef
7.
Zurück zum Zitat Abbosh, A. M., Bialkowski, M. E., Mazierska, J., & Jacob, M. V. (2006). A planar UWB antenna with signal rejection capability in the 4–6 GHz band. IEEE Microwave and Wireless Components Letters, 16(5), 278–280.CrossRef Abbosh, A. M., Bialkowski, M. E., Mazierska, J., & Jacob, M. V. (2006). A planar UWB antenna with signal rejection capability in the 4–6 GHz band. IEEE Microwave and Wireless Components Letters, 16(5), 278–280.CrossRef
8.
Zurück zum Zitat Hu, S., Chen, H., Law, C. L., Shen, Z., Zui, L., Zhang, W., et al. (2007). Backscattering cross section of ultrawideband antennas. IEEE Antennas and Wireless Propagation Letters, 6, 70–73.CrossRef Hu, S., Chen, H., Law, C. L., Shen, Z., Zui, L., Zhang, W., et al. (2007). Backscattering cross section of ultrawideband antennas. IEEE Antennas and Wireless Propagation Letters, 6, 70–73.CrossRef
9.
Zurück zum Zitat Lui, W. J., Cheng, C. H., Cheng, Y., & Zhu, H. (2005). Frequency notched ultra-wideband microstrip slot antenna with fractal tuning stub. Electronics Letters, 41(6), 294–296.CrossRef Lui, W. J., Cheng, C. H., Cheng, Y., & Zhu, H. (2005). Frequency notched ultra-wideband microstrip slot antenna with fractal tuning stub. Electronics Letters, 41(6), 294–296.CrossRef
10.
Zurück zum Zitat Abbosh, A. M., & Bialkowski, M. E. (2009). Design of UWB planar band-notched antenna using parasitic elements. IEEE Transactions on Antennas and Propagation, 57(3), 796–799.CrossRef Abbosh, A. M., & Bialkowski, M. E. (2009). Design of UWB planar band-notched antenna using parasitic elements. IEEE Transactions on Antennas and Propagation, 57(3), 796–799.CrossRef
11.
Zurück zum Zitat Kim, K. H., & Park, S. O. (2006). Analysis of the small band-rejected antenna with the parasitic strip for UWB. IEEE Transactions on Antennas and Propagation, 54(6), 1688–1692.CrossRef Kim, K. H., & Park, S. O. (2006). Analysis of the small band-rejected antenna with the parasitic strip for UWB. IEEE Transactions on Antennas and Propagation, 54(6), 1688–1692.CrossRef
12.
Zurück zum Zitat Qu, S. W., Li, J. L., & Xue, Q. (2006). A band-notched ultra-wideband printed monopole antenna. IEEE Antennas and Wireless Propagation Letters, 5, 495–498.CrossRef Qu, S. W., Li, J. L., & Xue, Q. (2006). A band-notched ultra-wideband printed monopole antenna. IEEE Antennas and Wireless Propagation Letters, 5, 495–498.CrossRef
13.
Zurück zum Zitat Ryu, K. S., & Kishk, A. A. (2009). UWB antenna with single or dual band notches for lower WLAN band and upper WLAN band. IEEE Transactions on Antennas and Propagation, 57(12), 3942–3950.CrossRef Ryu, K. S., & Kishk, A. A. (2009). UWB antenna with single or dual band notches for lower WLAN band and upper WLAN band. IEEE Transactions on Antennas and Propagation, 57(12), 3942–3950.CrossRef
14.
Zurück zum Zitat Zhu, F., Gao, S., Ho, A. T. S., Al Hameed, A., See, C. H., Brown, T. W. C., et al. (2013). Multiple band-notched UWB antenna with band-rejected elements integrated in the feed line. IEEE Transactions on Antennas and Propagation, 61(5), 3952–3960.CrossRef Zhu, F., Gao, S., Ho, A. T. S., Al Hameed, A., See, C. H., Brown, T. W. C., et al. (2013). Multiple band-notched UWB antenna with band-rejected elements integrated in the feed line. IEEE Transactions on Antennas and Propagation, 61(5), 3952–3960.CrossRef
15.
Zurück zum Zitat Foudazi, A., Hassani, H. R., & Ali Nezhad, S. M. (2012). Small UWB planar monopole antenna with added GPS/GSM/WLAN bands. IEEE Transactions on Antennas and Propagation, 60(6), 2987–2992.CrossRef Foudazi, A., Hassani, H. R., & Ali Nezhad, S. M. (2012). Small UWB planar monopole antenna with added GPS/GSM/WLAN bands. IEEE Transactions on Antennas and Propagation, 60(6), 2987–2992.CrossRef
16.
Zurück zum Zitat Tang, M. C., Xiao, S., Deng, T., Wang, D., Guan, J., Wang, B., et al. (2011). Compact UWB antenna with multiple band-notches for WiMAX and WLAN. IEEE Transactions on Antennas and Propagation, 59(4), 1372–1376.CrossRef Tang, M. C., Xiao, S., Deng, T., Wang, D., Guan, J., Wang, B., et al. (2011). Compact UWB antenna with multiple band-notches for WiMAX and WLAN. IEEE Transactions on Antennas and Propagation, 59(4), 1372–1376.CrossRef
17.
Zurück zum Zitat Deng, J. Y., Yin, Y. Z., Zhou, S. G., & Liu, Q. Z. (2008). Compact ultra-wideband antenna with tri-band notched characteristics. Electronics Letters, 44(21), 1231–1233.CrossRef Deng, J. Y., Yin, Y. Z., Zhou, S. G., & Liu, Q. Z. (2008). Compact ultra-wideband antenna with tri-band notched characteristics. Electronics Letters, 44(21), 1231–1233.CrossRef
18.
Zurück zum Zitat Trang, N. D., Lee, D. H., & Park, H. C. (2011). Design and analysis of compact printed triple band-notched UWB antenna. IEEE Antennas and Wireless Propagation Letters, 10, 403–406.CrossRef Trang, N. D., Lee, D. H., & Park, H. C. (2011). Design and analysis of compact printed triple band-notched UWB antenna. IEEE Antennas and Wireless Propagation Letters, 10, 403–406.CrossRef
19.
Zurück zum Zitat Yazdi, M., & Komjani, N. (2011). Design of a band-notched UWB monopole antenna by means of an EBG structure. IEEE Antennas and Wireless Propagation Letters, 10, 170–173.CrossRef Yazdi, M., & Komjani, N. (2011). Design of a band-notched UWB monopole antenna by means of an EBG structure. IEEE Antennas and Wireless Propagation Letters, 10, 170–173.CrossRef
20.
Zurück zum Zitat Peng, L., & Ruan, C. (2011). UWB band-notched monopole antenna design using electromagnetic-bandgap structures. IEEE Transactions on Microwave Theory and Techniques, 59, 1074–1081.CrossRef Peng, L., & Ruan, C. (2011). UWB band-notched monopole antenna design using electromagnetic-bandgap structures. IEEE Transactions on Microwave Theory and Techniques, 59, 1074–1081.CrossRef
21.
Zurück zum Zitat Zheng, Q. R., Fu, Y. Q., & Yuan, N. C. (2008). A novel compact spiral electromagnetic band-gap (EBG) structure. IEEE Transactions on Antennas and Propagation, 56(6), 1656–1660.CrossRef Zheng, Q. R., Fu, Y. Q., & Yuan, N. C. (2008). A novel compact spiral electromagnetic band-gap (EBG) structure. IEEE Transactions on Antennas and Propagation, 56(6), 1656–1660.CrossRef
22.
Zurück zum Zitat Wang, C.-L., Shiue, G. H., Guo, W.-D., & Wu, R.-B. (2006). A systematic design to suppress wideband ground bounce noise in high-speed circuits by electromagnetic-bandgap-enhanced split powers. IEEE Transactions on Microwave Theory and Techniques, 54(12), 4209–4217.CrossRef Wang, C.-L., Shiue, G. H., Guo, W.-D., & Wu, R.-B. (2006). A systematic design to suppress wideband ground bounce noise in high-speed circuits by electromagnetic-bandgap-enhanced split powers. IEEE Transactions on Microwave Theory and Techniques, 54(12), 4209–4217.CrossRef
23.
Zurück zum Zitat Xie, H.-H., Jiao, Y.-C., Song, K., & Yang, B. (2010). Miniature electromagnetic band-gap structure using spiral ground plane. Progress in Electromagnetics Research Letters, 17, 163–170.CrossRef Xie, H.-H., Jiao, Y.-C., Song, K., & Yang, B. (2010). Miniature electromagnetic band-gap structure using spiral ground plane. Progress in Electromagnetics Research Letters, 17, 163–170.CrossRef
24.
Zurück zum Zitat Simovski, C. R., Maagt, P., & Melchakova, I. (2005). High-impedance surfaces having stable resonance with respect to polarization and incidence angle. IEEE Transactions on Antennas and Propagation, 53(3), 908–914.CrossRef Simovski, C. R., Maagt, P., & Melchakova, I. (2005). High-impedance surfaces having stable resonance with respect to polarization and incidence angle. IEEE Transactions on Antennas and Propagation, 53(3), 908–914.CrossRef
25.
Zurück zum Zitat McVay, J., & Engheta, N. (2004). High impedance metamaterial surfaces using Hilbert-curve inclusions. IEEE Microwave and Wireless Components Letters, 14(3), 130–132.CrossRef McVay, J., & Engheta, N. (2004). High impedance metamaterial surfaces using Hilbert-curve inclusions. IEEE Microwave and Wireless Components Letters, 14(3), 130–132.CrossRef
26.
Zurück zum Zitat Vardaxoglou, J. C., Gousetis, G., & Feresidis, A. P. (2007). Miniaturisation schemes for metallodielectric electromagnetic bandgap structures. IET Microwaves, Antennas and Propagation, 1(1), 234–239.CrossRef Vardaxoglou, J. C., Gousetis, G., & Feresidis, A. P. (2007). Miniaturisation schemes for metallodielectric electromagnetic bandgap structures. IET Microwaves, Antennas and Propagation, 1(1), 234–239.CrossRef
27.
Zurück zum Zitat Yang, F., & Rahmat-Samii, Y. (2004). Polarization dependent electromagnetic band gap (PDEBG) structures: designs and applications. Microwave and Optical Technology Letters, 41(6), 439–444.CrossRef Yang, F., & Rahmat-Samii, Y. (2004). Polarization dependent electromagnetic band gap (PDEBG) structures: designs and applications. Microwave and Optical Technology Letters, 41(6), 439–444.CrossRef
28.
Zurück zum Zitat Sievenpiper, D. F., Schaffner, J. H., Song, H. J., Loo, R. Y., & Tangonan, G. (2003). Two-dimensional beam steering using an electrically tunable impedance surface. EEE Transactions on Antennas and Propagation, 51(10), 2713–2722.CrossRef Sievenpiper, D. F., Schaffner, J. H., Song, H. J., Loo, R. Y., & Tangonan, G. (2003). Two-dimensional beam steering using an electrically tunable impedance surface. EEE Transactions on Antennas and Propagation, 51(10), 2713–2722.CrossRef
29.
Zurück zum Zitat Boutayeb, H., & Denidni, T. A. (2006). Technique for reducing the power supply in reconfigurable cylindrical electromagnetic bandgap structures. IEEE Antennas and Wireless Propagation Letters, 5(1), 424–425.CrossRef Boutayeb, H., & Denidni, T. A. (2006). Technique for reducing the power supply in reconfigurable cylindrical electromagnetic bandgap structures. IEEE Antennas and Wireless Propagation Letters, 5(1), 424–425.CrossRef
30.
Zurück zum Zitat Ge, Y., & Esselle, K. P. (2007). GA/FDTD technique for the design and optimisation of periodic metamaterials. IET Microwaves, Antennas & Propagation, 1(1), 158–164.CrossRef Ge, Y., & Esselle, K. P. (2007). GA/FDTD technique for the design and optimisation of periodic metamaterials. IET Microwaves, Antennas & Propagation, 1(1), 158–164.CrossRef
31.
Zurück zum Zitat Dai, M., & Sung, C. W. (2013). Achieving high diversity and multiplexing gains in the asynchronous parallel relay network. Transactions on Emerging Telecommunications Technologies, 24(2), 232–243.CrossRef Dai, M., & Sung, C. W. (2013). Achieving high diversity and multiplexing gains in the asynchronous parallel relay network. Transactions on Emerging Telecommunications Technologies, 24(2), 232–243.CrossRef
32.
Zurück zum Zitat Arslan, H., Chen, Z. N., & Di Benedetto, M.-G. (2006). Ultra-wideband wireless communication. Hoboken: Wiley.CrossRef Arslan, H., Chen, Z. N., & Di Benedetto, M.-G. (2006). Ultra-wideband wireless communication. Hoboken: Wiley.CrossRef
33.
Zurück zum Zitat Oppermann, I., Hamalainen, M., & Linatti, J. (2004). UWB theory and applications. Hoboken: Wiley.CrossRef Oppermann, I., Hamalainen, M., & Linatti, J. (2004). UWB theory and applications. Hoboken: Wiley.CrossRef
34.
Zurück zum Zitat Yang, F., & Rahmat-Samii, Y. (2004). Electromagnetic band gap structures in antenna engineering. Cambridge: Cambridge University Press. Yang, F., & Rahmat-Samii, Y. (2004). Electromagnetic band gap structures in antenna engineering. Cambridge: Cambridge University Press.
35.
Zurück zum Zitat Sievenpiper, D. (1999). High-impedance electromagnetic surfaces. Ph.D. dissertation, Department of Electrical Engineering University of California, Los Angeles. Sievenpiper, D. (1999). High-impedance electromagnetic surfaces. Ph.D. dissertation, Department of Electrical Engineering University of California, Los Angeles.
36.
Zurück zum Zitat Jaglan, N., & Gupta, S. D. (2015). Design and analysis of performance enhanced microstrip patch antenna with EBG substrate. International Journal of Microwave and Optical Technology (IJMOT), 10(2), 79–88. Jaglan, N., & Gupta, S. D. (2015). Design and analysis of performance enhanced microstrip patch antenna with EBG substrate. International Journal of Microwave and Optical Technology (IJMOT), 10(2), 79–88.
37.
Zurück zum Zitat Jaglan, N., & Gupta, S. D. (2015). Reflection phase characteristics of EBG structures and Wlan band notched circular monopole antenna design. International Journal of Communications Antenna and Propagation (IRECAP), 5(4), 233–240.CrossRef Jaglan, N., & Gupta, S. D. (2015). Reflection phase characteristics of EBG structures and Wlan band notched circular monopole antenna design. International Journal of Communications Antenna and Propagation (IRECAP), 5(4), 233–240.CrossRef
Metadaten
Titel
Band notched UWB circular monopole antenna with inductance enhanced modified mushroom EBG structures
verfasst von
Naveen Jaglan
Samir Dev Gupta
Binod Kumar Kanaujia
Shweta Srivastava
Publikationsdatum
01.08.2016
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 2/2018
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-016-1343-7

Weitere Artikel der Ausgabe 2/2018

Wireless Networks 2/2018 Zur Ausgabe

Neuer Inhalt