Skip to main content
Erschienen in: Journal of Materials Science 5/2019

12.11.2018 | Electronic materials

Bandgap properties of a piezoelectric phononic crystal nanobeam based on nonlocal theory

verfasst von: Denghui Qian

Erschienen in: Journal of Materials Science | Ausgabe 5/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The aim of this paper is to investigate the bandgap properties of a piezoelectric phononic crystal (PC) nanobeam with size effect by coupling the plane wave expansion method, Euler–Bernoulli beam theory and nonlocal theory. The first four orders were chosen to study the influences of thermo-electro coupling, size effect and geometric parameters on band gaps. Temperature change and external electrical voltage were chosen as the parameters capable of influencing thermo-electro coupling fields. Scale coefficient was chosen as the influencing parameters related to size effect. The lengths of PZT-4 and epoxy within a unit cell, along with the width and thickness of the PC nanobeam, were identified as influential geometric parameters. Collectively, our results are expected to be helpful for the design of piezoelectric nanobeam-based devices.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Assouar MB, Oudich M (2012) Enlargement of a locally resonant sonic band gap by using double-sides stubbed phononic plates. Appl Phys Lett 100(12):141 Assouar MB, Oudich M (2012) Enlargement of a locally resonant sonic band gap by using double-sides stubbed phononic plates. Appl Phys Lett 100(12):141
2.
Zurück zum Zitat Ma J, Hou Z, Assouar BM (2014) Opening a large full phononic band gap in thin elastic plate with resonant units. J Appl Phys 115(9):pp. 093508–093508-5CrossRef Ma J, Hou Z, Assouar BM (2014) Opening a large full phononic band gap in thin elastic plate with resonant units. J Appl Phys 115(9):pp. 093508–093508-5CrossRef
3.
Zurück zum Zitat Shu Hai-Sheng, Shi Xiao-Na, Li Shi-Dan et al (2014) Numerical research on dynamic stress of phononic crystal rod in longitudinal wave band gap. Int J Mod Phys B 28(32):2019CrossRef Shu Hai-Sheng, Shi Xiao-Na, Li Shi-Dan et al (2014) Numerical research on dynamic stress of phononic crystal rod in longitudinal wave band gap. Int J Mod Phys B 28(32):2019CrossRef
4.
Zurück zum Zitat Chuang KC, Yuan ZW, Guo YQ et al (2018) A self-demodulated fiber Bragg grating for investigating impact-induced transient responses of phononic crystal beams. J Sound Vib 431:40–53CrossRef Chuang KC, Yuan ZW, Guo YQ et al (2018) A self-demodulated fiber Bragg grating for investigating impact-induced transient responses of phononic crystal beams. J Sound Vib 431:40–53CrossRef
5.
Zurück zum Zitat Li HY, Wang Y, Ke MZ et al (2018) Acoustic manipulating of capsule-shaped particle assisted by phononic crystal plate. Appl Phys Lett 112(22):223501CrossRef Li HY, Wang Y, Ke MZ et al (2018) Acoustic manipulating of capsule-shaped particle assisted by phononic crystal plate. Appl Phys Lett 112(22):223501CrossRef
6.
Zurück zum Zitat Qian D, Shi Z (2016) Bandgap properties in locally resonant phononic crystal double panel structures with periodically attached spring-mass resonators. Phys Lett A 380(41):3319–3325CrossRef Qian D, Shi Z (2016) Bandgap properties in locally resonant phononic crystal double panel structures with periodically attached spring-mass resonators. Phys Lett A 380(41):3319–3325CrossRef
7.
Zurück zum Zitat Li L, Guo Y (2016) Analysis of longitudinal waves in rod-type piezoelectric phononic crystals. Crystals 6(4):45CrossRef Li L, Guo Y (2016) Analysis of longitudinal waves in rod-type piezoelectric phononic crystals. Crystals 6(4):45CrossRef
8.
Zurück zum Zitat Zhou C, Yi S, Chen J (2016) Tunable Lamb wave band gaps in two-dimensional magnetoelastic phononic crystal slabs by an applied external magnetostatic field. Ultrasonics 71:69–74CrossRef Zhou C, Yi S, Chen J (2016) Tunable Lamb wave band gaps in two-dimensional magnetoelastic phononic crystal slabs by an applied external magnetostatic field. Ultrasonics 71:69–74CrossRef
9.
Zurück zum Zitat Guo X, Wei P, Lan M et al (2016) Dispersion relations of elastic waves in one-dimensional piezoelectric/piezomagnetic phononic crystal with functionally graded interlayers. Ultrasonics 70:158–171CrossRef Guo X, Wei P, Lan M et al (2016) Dispersion relations of elastic waves in one-dimensional piezoelectric/piezomagnetic phononic crystal with functionally graded interlayers. Ultrasonics 70:158–171CrossRef
10.
Zurück zum Zitat Sugino C, Leadenham S, Ruzzene M et al (2017) An investigation of electroelastic bandgap formation in locally resonant piezoelectric metastructures. Smart Mater Struct 26(5):055029CrossRef Sugino C, Leadenham S, Ruzzene M et al (2017) An investigation of electroelastic bandgap formation in locally resonant piezoelectric metastructures. Smart Mater Struct 26(5):055029CrossRef
11.
Zurück zum Zitat Jr EJPM, Santos JMCD (2018) Evanescent Bloch waves and complex band structure in magnetoelectroelastic phononic crystals. Mech Syst Signal Process 112:280–304CrossRef Jr EJPM, Santos JMCD (2018) Evanescent Bloch waves and complex band structure in magnetoelectroelastic phononic crystals. Mech Syst Signal Process 112:280–304CrossRef
12.
Zurück zum Zitat Zhang WM, Hu KM, Peng ZK et al (2015) Tunable micro- and nanomechanical resonators. Sensors 15(10):26478–26566CrossRef Zhang WM, Hu KM, Peng ZK et al (2015) Tunable micro- and nanomechanical resonators. Sensors 15(10):26478–26566CrossRef
13.
Zurück zum Zitat Wagner MR, Graczykowski B, Reparaz JS et al (2016) Two-dimensional phononic crystals: disorder matters. Nano Lett 16(9):5661CrossRef Wagner MR, Graczykowski B, Reparaz JS et al (2016) Two-dimensional phononic crystals: disorder matters. Nano Lett 16(9):5661CrossRef
14.
Zurück zum Zitat Yan Z, Wei C, Zhang C (2017) Band structures of elastic SH waves in nanoscale multi-layered functionally graded phononic crystals with/without nonlocal interface imperfections by using a local RBF collocation method. Acta Mech Solida Sin 30(4):390–403CrossRef Yan Z, Wei C, Zhang C (2017) Band structures of elastic SH waves in nanoscale multi-layered functionally graded phononic crystals with/without nonlocal interface imperfections by using a local RBF collocation method. Acta Mech Solida Sin 30(4):390–403CrossRef
15.
Zurück zum Zitat Quiroz HP, Barrera-Patiño CP, Rey-González RR et al (2016) Evidence of iridescence in TiO2, nanostructures: an approximation in plane wave expansion method. Photonics Nanostruct Fundam Appl 22:46–50CrossRef Quiroz HP, Barrera-Patiño CP, Rey-González RR et al (2016) Evidence of iridescence in TiO2, nanostructures: an approximation in plane wave expansion method. Photonics Nanostruct Fundam Appl 22:46–50CrossRef
16.
Zurück zum Zitat Sadat SM, Wang RY (2016) Colloidal nanocrystal superlattices as phononic crystals: plane wave expansion modeling of phonon band structure. RSC Adv 6:44578–44587CrossRef Sadat SM, Wang RY (2016) Colloidal nanocrystal superlattices as phononic crystals: plane wave expansion modeling of phonon band structure. RSC Adv 6:44578–44587CrossRef
17.
Zurück zum Zitat Jr EJPM, Santos JMCD (2017) Complete band gaps in nano-piezoelectric phononic crystals. Mater Res 20:15–38CrossRef Jr EJPM, Santos JMCD (2017) Complete band gaps in nano-piezoelectric phononic crystals. Mater Res 20:15–38CrossRef
18.
Zurück zum Zitat Yan Z, Jiang LY (2011) The vibrational and buckling behaviors of piezoelectric nanobeams with surface effects. Nanotechnology 22(24):245703CrossRef Yan Z, Jiang LY (2011) The vibrational and buckling behaviors of piezoelectric nanobeams with surface effects. Nanotechnology 22(24):245703CrossRef
19.
Zurück zum Zitat Liu C, Ke LL, Wang YS et al (2013) Thermo-electro-mechanical vibration of piezoelectric nanoplates based on the nonlocal theory. Compos Struct 106(12):167–174CrossRef Liu C, Ke LL, Wang YS et al (2013) Thermo-electro-mechanical vibration of piezoelectric nanoplates based on the nonlocal theory. Compos Struct 106(12):167–174CrossRef
20.
Zurück zum Zitat Zhang S, Gao Y (2017) Surface effect on band structure of flexural wave propagating in magneto-elastic phononic crystal nanobeam. J Phys D Appl Phys 50(44):445303CrossRef Zhang S, Gao Y (2017) Surface effect on band structure of flexural wave propagating in magneto-elastic phononic crystal nanobeam. J Phys D Appl Phys 50(44):445303CrossRef
21.
Zurück zum Zitat Mindlin RD, Tiersten HF (1962) Effects of couple-stresses in linear elasticity. Arch Ration Mech Anal 11(1):415–448CrossRef Mindlin RD, Tiersten HF (1962) Effects of couple-stresses in linear elasticity. Arch Ration Mech Anal 11(1):415–448CrossRef
22.
Zurück zum Zitat Eringen AC (1972) Nonlocal polar elastic continua. Int J Eng Sci 10(1):1–16CrossRef Eringen AC (1972) Nonlocal polar elastic continua. Int J Eng Sci 10(1):1–16CrossRef
23.
Zurück zum Zitat Eringen AC (1983) On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J Appl Phys 54(9):4703–4710CrossRef Eringen AC (1983) On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J Appl Phys 54(9):4703–4710CrossRef
24.
Zurück zum Zitat Eringen AC (2003) Nonlocal continuum field theories. Appl Mech Rev 56(2):391–398CrossRef Eringen AC (2003) Nonlocal continuum field theories. Appl Mech Rev 56(2):391–398CrossRef
25.
Zurück zum Zitat Ke LL, Wang YS (2012) Thermo-electric-mechanical vibration of piezoelectric nanobeams based on the nonlocal theory. Smart Mater Struct 21(2):025018CrossRef Ke LL, Wang YS (2012) Thermo-electric-mechanical vibration of piezoelectric nanobeams based on the nonlocal theory. Smart Mater Struct 21(2):025018CrossRef
26.
Zurück zum Zitat Asemi HR, Asemi SR, Farajpour A et al (2015) Nanoscale mass detection based on vibrating piezoelectric ultrathin films under thermo-electro-mechanical loads. Physica E 68:112–122CrossRef Asemi HR, Asemi SR, Farajpour A et al (2015) Nanoscale mass detection based on vibrating piezoelectric ultrathin films under thermo-electro-mechanical loads. Physica E 68:112–122CrossRef
27.
Zurück zum Zitat Arani AG, Amir S, Mozdianfard MR (2012) Nonlocal electro-thermal transverse vibration of embedded fluid-conveying DWBNNTs. J Mech Sci Technol 26(5):1455–1462CrossRef Arani AG, Amir S, Mozdianfard MR (2012) Nonlocal electro-thermal transverse vibration of embedded fluid-conveying DWBNNTs. J Mech Sci Technol 26(5):1455–1462CrossRef
28.
Zurück zum Zitat Maraghi ZK, Arani AG, Kolahchi R et al (2013) Nonlocal vibration and instability of embedded DWBNNT conveying viscose fluid. Compos B 45(1):423–432CrossRef Maraghi ZK, Arani AG, Kolahchi R et al (2013) Nonlocal vibration and instability of embedded DWBNNT conveying viscose fluid. Compos B 45(1):423–432CrossRef
29.
Zurück zum Zitat Ansari R, Oskouie MF, Gholami R et al (2016) Thermo-electro-mechanical vibration of postbuckled piezoelectric Timoshenko nanobeams based on the nonlocal elasticity theory. Compos Part B 89:316–327CrossRef Ansari R, Oskouie MF, Gholami R et al (2016) Thermo-electro-mechanical vibration of postbuckled piezoelectric Timoshenko nanobeams based on the nonlocal elasticity theory. Compos Part B 89:316–327CrossRef
30.
Zurück zum Zitat Li HB, Wang X (2016) Nonlinear dynamic characteristics of graphene/piezoelectric laminated films in sensing moving loads. Sens Actuators A 238:80–94CrossRef Li HB, Wang X (2016) Nonlinear dynamic characteristics of graphene/piezoelectric laminated films in sensing moving loads. Sens Actuators A 238:80–94CrossRef
31.
Zurück zum Zitat Cao Y, Hou Z, Liu Y (2004) Convergence problem of plane-wave expansion method for phononic crystals. Phys Lett A 327(2–3):247–253CrossRef Cao Y, Hou Z, Liu Y (2004) Convergence problem of plane-wave expansion method for phononic crystals. Phys Lett A 327(2–3):247–253CrossRef
32.
Zurück zum Zitat Hou Z, Fu X, Liu Y (2006) Singularity of the Bloch theorem in the fluid/solid phononic crystal. Phys Rev B 73(2):024304CrossRef Hou Z, Fu X, Liu Y (2006) Singularity of the Bloch theorem in the fluid/solid phononic crystal. Phys Rev B 73(2):024304CrossRef
33.
Zurück zum Zitat Kushwaha MS, Halevi P, Dobrzynski L et al (1993) Acoustic band structure of periodic elastic composites. Phys Rev Lett 71(13):2022–2025CrossRef Kushwaha MS, Halevi P, Dobrzynski L et al (1993) Acoustic band structure of periodic elastic composites. Phys Rev Lett 71(13):2022–2025CrossRef
34.
Zurück zum Zitat Wu F, Liu Z, Liu Y (2004) Splitting and tuning characteristics of the point defect modes in two-dimensional phononic crystals. Phys Rev E Stat Nonlinear Soft Matter Phys 69(2):066609CrossRef Wu F, Liu Z, Liu Y (2004) Splitting and tuning characteristics of the point defect modes in two-dimensional phononic crystals. Phys Rev E Stat Nonlinear Soft Matter Phys 69(2):066609CrossRef
35.
Zurück zum Zitat Liu Z, Chan CT, Sheng P et al (2000) Elastic wave scattering by periodic structures of spherical objects: theory and experiment. Phys Rev B 62(4):2446–2457CrossRef Liu Z, Chan CT, Sheng P et al (2000) Elastic wave scattering by periodic structures of spherical objects: theory and experiment. Phys Rev B 62(4):2446–2457CrossRef
36.
Zurück zum Zitat Qiu C, Liu Z, Mei J et al (2005) The layer multiple-scattering method for calculating transmission coefficients of 2D phononic crystals. Solid State Commun 134(11):765–770CrossRef Qiu C, Liu Z, Mei J et al (2005) The layer multiple-scattering method for calculating transmission coefficients of 2D phononic crystals. Solid State Commun 134(11):765–770CrossRef
37.
Zurück zum Zitat Sigalas MM, Garcia N (2000) Theoretical study of three dimensional elastic band gaps with the finite-difference time-domain method. J Appl Phys 87(6):3122–3125CrossRef Sigalas MM, Garcia N (2000) Theoretical study of three dimensional elastic band gaps with the finite-difference time-domain method. J Appl Phys 87(6):3122–3125CrossRef
38.
Zurück zum Zitat Cao Y, Hou Z, Liu Y (2004) Finite difference time domain method for band-structure calculations of two-dimensional phononic crystals. Solid State Commun 132(8):539–543CrossRef Cao Y, Hou Z, Liu Y (2004) Finite difference time domain method for band-structure calculations of two-dimensional phononic crystals. Solid State Commun 132(8):539–543CrossRef
39.
Zurück zum Zitat Wang G, Wen J, Liu Y et al (2004) Lumped-mass method for the study of band structure in two-dimensional phononic crystals. Phys Rev B 69(18):1324–1332CrossRef Wang G, Wen J, Liu Y et al (2004) Lumped-mass method for the study of band structure in two-dimensional phononic crystals. Phys Rev B 69(18):1324–1332CrossRef
40.
Zurück zum Zitat Wang G, Wen J, Wen X (2005) Quasi-one-dimensional phononic crystals studied using the improved lumped-mass method: application to locally resonant beams with flexural wave band gap. Phys Rev B 71(10):4302 Wang G, Wen J, Wen X (2005) Quasi-one-dimensional phononic crystals studied using the improved lumped-mass method: application to locally resonant beams with flexural wave band gap. Phys Rev B 71(10):4302
41.
Zurück zum Zitat Wang L, Bertoldi K (2012) Mechanically tunable phononic band gaps in three-dimensional periodic elastomeric structures. Int J Solids Struct 49(19–20):2881–2885CrossRef Wang L, Bertoldi K (2012) Mechanically tunable phononic band gaps in three-dimensional periodic elastomeric structures. Int J Solids Struct 49(19–20):2881–2885CrossRef
42.
Zurück zum Zitat Shi Z, Huang J (2013) Feasibility of reducing three-dimensional wave energy by introducing periodic foundations. Soil Dyn Earthq Eng 50(1):204–212CrossRef Shi Z, Huang J (2013) Feasibility of reducing three-dimensional wave energy by introducing periodic foundations. Soil Dyn Earthq Eng 50(1):204–212CrossRef
43.
Zurück zum Zitat Mencik JM (2018) A wave finite element approach for the analysis of periodic structures with cyclic symmetry in dynamic substructuring. J Sound Vib 431:441–457CrossRef Mencik JM (2018) A wave finite element approach for the analysis of periodic structures with cyclic symmetry in dynamic substructuring. J Sound Vib 431:441–457CrossRef
44.
Zurück zum Zitat Li X, Liu Z (2005) Coupling of cavity modes and guiding modes in two-dimensional phononic crystals. Solid State Commun 133(6):397–402CrossRef Li X, Liu Z (2005) Coupling of cavity modes and guiding modes in two-dimensional phononic crystals. Solid State Commun 133(6):397–402CrossRef
45.
Zurück zum Zitat Wang G, Wen J, Liu Y et al (2004) Study on the calculation of elastic wave band structure in two-dimensional phononic crystals with lattice of scatters in arbitrary shape. J Funct Mater 35:2257–2260 Wang G, Wen J, Liu Y et al (2004) Study on the calculation of elastic wave band structure in two-dimensional phononic crystals with lattice of scatters in arbitrary shape. J Funct Mater 35:2257–2260
46.
Zurück zum Zitat Laude V, Achaoui Y, Benchabane S et al (2009) Evanescent Bloch waves and the complex band structure of phononic crystals. Phys Rev B Condens Matter 80(9):092301CrossRef Laude V, Achaoui Y, Benchabane S et al (2009) Evanescent Bloch waves and the complex band structure of phononic crystals. Phys Rev B Condens Matter 80(9):092301CrossRef
47.
Zurück zum Zitat Romerogarcía V, Sánchezpérez JV, Garciaraffi LM (2010) Evanescent modes in sonic crystals: complex dispersion relation and supercell approximation. J Appl Phys 108(4):241 Romerogarcía V, Sánchezpérez JV, Garciaraffi LM (2010) Evanescent modes in sonic crystals: complex dispersion relation and supercell approximation. J Appl Phys 108(4):241
48.
Zurück zum Zitat Oudich M, Li Y, Assouar BM et al (2010) A sonic band gap based on the locally resonant phononic plates with stubs. New J Phys 12(2):201–206 Oudich M, Li Y, Assouar BM et al (2010) A sonic band gap based on the locally resonant phononic plates with stubs. New J Phys 12(2):201–206
Metadaten
Titel
Bandgap properties of a piezoelectric phononic crystal nanobeam based on nonlocal theory
verfasst von
Denghui Qian
Publikationsdatum
12.11.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 5/2019
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-3124-4

Weitere Artikel der Ausgabe 5/2019

Journal of Materials Science 5/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.