Skip to main content
Erschienen in: Journal of Materials Science 5/2017

14.11.2016 | Original Paper

Barocaloric effect associated with magneto-structural transformation studied by an effectively indirect method for the Ni58.3Mn17.1Ga24.6 Heusler alloy

verfasst von: X. J. He, K. Xu, S. X. Wei, Y. L. Zhang, Z. Li, C. Jing

Erschienen in: Journal of Materials Science | Ausgabe 5/2017

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the present work, we report the dependence of magnetization on hydrostatic pressure for the non-stoichiometric Ni58.3Mn17.1Ga24.6 alloy, which undergoes the transformation from a paramagnetic austenite to a ferromagnetic martensite near room temperature. It is found that the application of pressure can push the martensitic transformation (MT) to a higher temperature at a rate of 4 K GPa−1. Considering the change of phase fraction under the isothermal condition caused by pressure-induced MT, we develop an indirect method based on magnetic data measured under various pressures to determine the barocaloric effect (BCE) for the studied alloy. When the change of the applied hydrostatic pressure reaches 1.05 GPa, the maximum isothermal entropy change \( \Delta S_{\text{T}} \) is calculated to be about −13.6 J kg−1 K−1, yielding a value of 2.8 K for the adiabatic temperature change \( \Delta T_{\text{ad}} \) near room temperature. These values are comparable to those obtained in many alloys of the same series by using superconducting magnets. Such a considerable BCE can be attributed to the fact that the MT can be driven more easily by the pressure-induced crystallographic change than by the magnetic field-induced spin–lattice coupling.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Pecharsky VK, Gschneidner KA Jr (1997) Giant magnetocaloric effect in Gd5(Si2Ge2). Phys Rev Lett 78:4494–4497CrossRef Pecharsky VK, Gschneidner KA Jr (1997) Giant magnetocaloric effect in Gd5(Si2Ge2). Phys Rev Lett 78:4494–4497CrossRef
2.
Zurück zum Zitat Tegus O, Brück E, Buschow KHJ, de Boer FR (2002) Transition-metal-based magnetic refrigerants for room-temperature applications. Nature 415:150–152CrossRef Tegus O, Brück E, Buschow KHJ, de Boer FR (2002) Transition-metal-based magnetic refrigerants for room-temperature applications. Nature 415:150–152CrossRef
3.
Zurück zum Zitat Tishin AM, Spichkin YI (2003) The magnetocaloric effect and its applications. Institute of Physics Publishing, BristolCrossRef Tishin AM, Spichkin YI (2003) The magnetocaloric effect and its applications. Institute of Physics Publishing, BristolCrossRef
4.
Zurück zum Zitat Gschneidner KA Jr, Pecharsky VK, Tsokol AO (2005) Recent developments in magnetocaloric materials. Rep Prog Phys 68:1479–1539CrossRef Gschneidner KA Jr, Pecharsky VK, Tsokol AO (2005) Recent developments in magnetocaloric materials. Rep Prog Phys 68:1479–1539CrossRef
5.
Zurück zum Zitat de Oliveira NA, von Ranke PJ (2010) Theoretical aspects of the magnetocaloric effect. Phys Rep 489:89–159CrossRef de Oliveira NA, von Ranke PJ (2010) Theoretical aspects of the magnetocaloric effect. Phys Rep 489:89–159CrossRef
6.
Zurück zum Zitat Liu J, Gottschall T, Skokov KP, Moore JD, Gutfleisch O (2012) Giant magnetocaloric effect driven by structural transitions. Nat Mater 11:620–626CrossRef Liu J, Gottschall T, Skokov KP, Moore JD, Gutfleisch O (2012) Giant magnetocaloric effect driven by structural transitions. Nat Mater 11:620–626CrossRef
7.
Zurück zum Zitat Mischenko AS, Zhang Q, Whatmore RW, Scott JF, Mathur ND (2006) Giant electrocaloric effect in the thin film relaxor ferroelectric 0.9PbMg1/3Nb2/3O3–0.1PbTiO3 near room temperature. Appl Phys Lett 89:242912–1–242912–3CrossRef Mischenko AS, Zhang Q, Whatmore RW, Scott JF, Mathur ND (2006) Giant electrocaloric effect in the thin film relaxor ferroelectric 0.9PbMg1/3Nb2/3O3–0.1PbTiO3 near room temperature. Appl Phys Lett 89:242912–1–242912–3CrossRef
8.
Zurück zum Zitat Neese B, Chu BJ, Lu SG, Wang Y, Furman E, Zhang QM (2008) Large electrocaloric effect in ferroelectric polymers near room temperature. Science 321:821–823CrossRef Neese B, Chu BJ, Lu SG, Wang Y, Furman E, Zhang QM (2008) Large electrocaloric effect in ferroelectric polymers near room temperature. Science 321:821–823CrossRef
9.
Zurück zum Zitat Kaddoussi H, Gagou Y, Lahmar A, Allouche B, Dellis JL, Courty M, Khemakhem H, El Marssi M (2016) Ferroelectric phase changes and electrocaloric effects in Ba(Zr0.1Ti0.9)1−x Sn x O3 ceramics solid solution. J Mater Sci 51:3454–3462. doi:10.1007/s10853-015-9663-z CrossRef Kaddoussi H, Gagou Y, Lahmar A, Allouche B, Dellis JL, Courty M, Khemakhem H, El Marssi M (2016) Ferroelectric phase changes and electrocaloric effects in Ba(Zr0.1Ti0.9)1−x Sn x O3 ceramics solid solution. J Mater Sci 51:3454–3462. doi:10.​1007/​s10853-015-9663-z CrossRef
10.
Zurück zum Zitat Nikitin SA, Myalikgulyev G, Annaorazov MP, Tyurin AL, Myndyev RW, Akopyan SA (1992) Giant elastocaloric effect in FeRh alloy. Phys Lett A 171:234–236CrossRef Nikitin SA, Myalikgulyev G, Annaorazov MP, Tyurin AL, Myndyev RW, Akopyan SA (1992) Giant elastocaloric effect in FeRh alloy. Phys Lett A 171:234–236CrossRef
11.
Zurück zum Zitat Bonnot E, Romero R, Mañosa L, Vives E, Planes A (2008) Elastocaloric effect associated with the martensitic transition in shape-memory alloys. Phys Rev Lett 100:125901–1–125901–4CrossRef Bonnot E, Romero R, Mañosa L, Vives E, Planes A (2008) Elastocaloric effect associated with the martensitic transition in shape-memory alloys. Phys Rev Lett 100:125901–1–125901–4CrossRef
12.
Zurück zum Zitat Sun W, Liu J, Lu BF, Li Y, Yan A (2016) Large elastocaloric effect at small transformation strain in Ni45Mn44Sn11 metamagnetic shape memory alloys. Scr Mater 114:1–4CrossRef Sun W, Liu J, Lu BF, Li Y, Yan A (2016) Large elastocaloric effect at small transformation strain in Ni45Mn44Sn11 metamagnetic shape memory alloys. Scr Mater 114:1–4CrossRef
13.
Zurück zum Zitat Strässle Th, Furrer A, Müller KA (2000) Cooling by adiabatic application of pressure-the barocaloric effect. Phys B 276–278:944–945CrossRef Strässle Th, Furrer A, Müller KA (2000) Cooling by adiabatic application of pressure-the barocaloric effect. Phys B 276–278:944–945CrossRef
14.
Zurück zum Zitat de Oliveira NA (2007) Entropy change upon magnetic field and pressure variations. Appl Phys Lett 90:052501–1–052501–3 de Oliveira NA (2007) Entropy change upon magnetic field and pressure variations. Appl Phys Lett 90:052501–1–052501–3
15.
Zurück zum Zitat Mañosa L, González-Alonso D, Planes A, Bonnot E, Barrio M, Tamarit J-L, Aksoy S, Acet M (2010) Giant solid-state barocaloric effect in the Ni–Mn–In magnetic shape-memory alloy. Nat Mater 9:478–481CrossRef Mañosa L, González-Alonso D, Planes A, Bonnot E, Barrio M, Tamarit J-L, Aksoy S, Acet M (2010) Giant solid-state barocaloric effect in the Ni–Mn–In magnetic shape-memory alloy. Nat Mater 9:478–481CrossRef
16.
Zurück zum Zitat Mañosa L, González-Alonso D, Planes A, Barrio M, Tamarit J-L, Titov IS, Acet M, Bhattacharyya A, Majumdar S (2011) Inverse barocaloric effect in the giant magnetocaloric La–Fe–Si–Co compound. Nat Commun 2:595–1–595–5CrossRef Mañosa L, González-Alonso D, Planes A, Barrio M, Tamarit J-L, Titov IS, Acet M, Bhattacharyya A, Majumdar S (2011) Inverse barocaloric effect in the giant magnetocaloric La–Fe–Si–Co compound. Nat Commun 2:595–1–595–5CrossRef
17.
Zurück zum Zitat Yuce S, Barrio M, Emre B, Stern-Taulats E, Planes A, Tamarit J-L, Mudryk Y, Gschneidner KA Jr, Pecharsky VK, Mañosa L (2012) Barocaloric effect in the magnetocaloric prototype Gd5Si2Ge2. Appl Phys Lett 101:071906–1–071906–5CrossRef Yuce S, Barrio M, Emre B, Stern-Taulats E, Planes A, Tamarit J-L, Mudryk Y, Gschneidner KA Jr, Pecharsky VK, Mañosa L (2012) Barocaloric effect in the magnetocaloric prototype Gd5Si2Ge2. Appl Phys Lett 101:071906–1–071906–5CrossRef
18.
Zurück zum Zitat Moya X, Kar-Narayan S, Mathur ND (2014) Caloric materials near ferroic phase transitions. Nat Mater 13:439–450CrossRef Moya X, Kar-Narayan S, Mathur ND (2014) Caloric materials near ferroic phase transitions. Nat Mater 13:439–450CrossRef
19.
Zurück zum Zitat Wu RR, Bao LF, Hu FX, Wu H, Huang QZ, Wang J, Dong XL, Li GN, Sun JR, Shen FR, Zhao TY, Zheng XQ, Wang LC, Liu Y, Zuo WL, Zhao YY, Zhang M, Wang XC, Jin CQ, Rao GH, Han XF, Shen BG (2015) Giant barocaloric effect in hexagonal Ni2In-type Mn–Co–Ge–In compounds around room temperature. Sci Rep 5:18027–1–18027–10 Wu RR, Bao LF, Hu FX, Wu H, Huang QZ, Wang J, Dong XL, Li GN, Sun JR, Shen FR, Zhao TY, Zheng XQ, Wang LC, Liu Y, Zuo WL, Zhao YY, Zhang M, Wang XC, Jin CQ, Rao GH, Han XF, Shen BG (2015) Giant barocaloric effect in hexagonal Ni2In-type Mn–Co–Ge–In compounds around room temperature. Sci Rep 5:18027–1–18027–10
20.
Zurück zum Zitat Matsunami D, Fujita A, Takenaka K, Kano M (2015) Giant barocaloric effect enhanced by the frustration of the antiferromagnetic phase in Mn3GaN. Nat Mater 14:73–1–73–6 Matsunami D, Fujita A, Takenaka K, Kano M (2015) Giant barocaloric effect enhanced by the frustration of the antiferromagnetic phase in Mn3GaN. Nat Mater 14:73–1–73–6
21.
Zurück zum Zitat Lloveras P, Stern-Taulats E, Barrio M, Tamarit J-L, Crossley S, Li W, Pomjakushin V, Planes A, Mañosa L, Mathur ND, Moya X (2015) Giant barocaloric effects at low pressure in ferrielectric ammonium sulphate. Nat Commun 6:8801–1–8801–6CrossRef Lloveras P, Stern-Taulats E, Barrio M, Tamarit J-L, Crossley S, Li W, Pomjakushin V, Planes A, Mañosa L, Mathur ND, Moya X (2015) Giant barocaloric effects at low pressure in ferrielectric ammonium sulphate. Nat Commun 6:8801–1–8801–6CrossRef
22.
Zurück zum Zitat Ullakko K, Huang JK, Kantner C, O’Handley RC, Kokorin VV (1996) Large magnetic-field-induced strains in Ni2MnGa single crystals. Appl Phys Lett 69:1966–1968CrossRef Ullakko K, Huang JK, Kantner C, O’Handley RC, Kokorin VV (1996) Large magnetic-field-induced strains in Ni2MnGa single crystals. Appl Phys Lett 69:1966–1968CrossRef
23.
Zurück zum Zitat Hu FX, Shen BG, Sun JR (2000) Magnetic entropy change in Ni515Mn227Ga258 alloy. Appl Phys Lett 76:3460–3462CrossRef Hu FX, Shen BG, Sun JR (2000) Magnetic entropy change in Ni515Mn227Ga258 alloy. Appl Phys Lett 76:3460–3462CrossRef
24.
Zurück zum Zitat Barandiarán JM, Chernenko VA, Lázpita P, Gutiérrez J, Feuchtwanger J (2009) Effect of martensitic transformation and magnetic field on transport properties of Ni–Mn–Ga and Ni–Fe–Ga Heusler alloys. Phys Rev B 80:104404–1–104404–7CrossRef Barandiarán JM, Chernenko VA, Lázpita P, Gutiérrez J, Feuchtwanger J (2009) Effect of martensitic transformation and magnetic field on transport properties of Ni–Mn–Ga and Ni–Fe–Ga Heusler alloys. Phys Rev B 80:104404–1–104404–7CrossRef
25.
Zurück zum Zitat Vasil’ev AN, Bozhko AD, Khovailo VV, Dikshtein IE, Shavrov VG, Buchelnikov VD, Matsumoto M, Suzuki S, Takagi T, Tani J (1999) Structural and magnetic phase transitions in shape-memory alloys Ni2+x Mn1−x Ga. Phys Rev B 59:1113–1120CrossRef Vasil’ev AN, Bozhko AD, Khovailo VV, Dikshtein IE, Shavrov VG, Buchelnikov VD, Matsumoto M, Suzuki S, Takagi T, Tani J (1999) Structural and magnetic phase transitions in shape-memory alloys Ni2+x Mn1−x Ga. Phys Rev B 59:1113–1120CrossRef
26.
Zurück zum Zitat Jiang CB, Muhammad Y, Deng LF, Wu W, Xu HB (2004) Composition dependence on the martensitic structures of the Mn-rich NiMnGa alloys. Acta Mater 52:2779–2785CrossRef Jiang CB, Muhammad Y, Deng LF, Wu W, Xu HB (2004) Composition dependence on the martensitic structures of the Mn-rich NiMnGa alloys. Acta Mater 52:2779–2785CrossRef
27.
Zurück zum Zitat Pasquale M, Sasso CP, Lewis LH, Giudici L, Lograsso T, Schlagel D (2005) Magnetostructural transition magnetocaloric effect in Ni55Mn20Ga25 single crystals. Phys Rev B 72:094435–1–094435–5CrossRef Pasquale M, Sasso CP, Lewis LH, Giudici L, Lograsso T, Schlagel D (2005) Magnetostructural transition magnetocaloric effect in Ni55Mn20Ga25 single crystals. Phys Rev B 72:094435–1–094435–5CrossRef
28.
Zurück zum Zitat Long Y, Zhang ZY, Wen D, Wu GH, Ye RC, Chang YQ, Wan FR (2005) Phase transition processes and magnetocaloric effects in the Heusler alloys NiMnGa with concurrence of magnetic and structural phase transition. J Appl Phys 98:046102–1–046102–3CrossRef Long Y, Zhang ZY, Wen D, Wu GH, Ye RC, Chang YQ, Wan FR (2005) Phase transition processes and magnetocaloric effects in the Heusler alloys NiMnGa with concurrence of magnetic and structural phase transition. J Appl Phys 98:046102–1–046102–3CrossRef
29.
Zurück zum Zitat Stadler S, Khan M, Mitchell J, Ali N, Gomes AM, Dubenko I, Takeuchi AY, Guimarães AP (2006) Magnetocaloric properties of Ni2Mn1−x Cu x Ga. Appl Phys Lett 88:192511–1–192511–3CrossRef Stadler S, Khan M, Mitchell J, Ali N, Gomes AM, Dubenko I, Takeuchi AY, Guimarães AP (2006) Magnetocaloric properties of Ni2Mn1−x Cu x Ga. Appl Phys Lett 88:192511–1–192511–3CrossRef
30.
Zurück zum Zitat Li ZB, Sánchez Llamazares JL, Sánchez-Valdés CF, Zhang YD, Esling C, Zhao X, Zuo L (2012) Microstructure and magnetocaloric effect of melt-spun Ni52Mn26Ga22 ribbon. Appl Phys Lett 100:174102–1–174102–4 Li ZB, Sánchez Llamazares JL, Sánchez-Valdés CF, Zhang YD, Esling C, Zhao X, Zuo L (2012) Microstructure and magnetocaloric effect of melt-spun Ni52Mn26Ga22 ribbon. Appl Phys Lett 100:174102–1–174102–4
31.
Zurück zum Zitat Li ZB, Zhang YD, Sánchez-Valdés CF, Sánchez Llamazares JL, Esling C, Zhao X, Zuo L (2014) Giant magnetocaloric effect in melt-spun Ni–Mn–Ga ribbons with magneto-multistructural transformation. Appl Phys Lett 104:044101–1–044101–5 Li ZB, Zhang YD, Sánchez-Valdés CF, Sánchez Llamazares JL, Esling C, Zhao X, Zuo L (2014) Giant magnetocaloric effect in melt-spun Ni–Mn–Ga ribbons with magneto-multistructural transformation. Appl Phys Lett 104:044101–1–044101–5
32.
Zurück zum Zitat Li Z, Yang HM, Xu K, Zhang YL, Zheng D, Jing C (2016) Magnetocaloric and negative thermal expansion effects for Ni55.5Mn19.5Ga25 Heusler alloy with magneto-structural transition. Mater Chem Phys 180:156–160CrossRef Li Z, Yang HM, Xu K, Zhang YL, Zheng D, Jing C (2016) Magnetocaloric and negative thermal expansion effects for Ni55.5Mn19.5Ga25 Heusler alloy with magneto-structural transition. Mater Chem Phys 180:156–160CrossRef
33.
Zurück zum Zitat Kamarád J, Albertini F, Arnold Z, Casoli F, Pareti L, Paoluzi A (2005) Effect of hydrostatic pressure on magnetization of Ni2+x Mn1−x Ga alloys. J Magn Magn Mater 290–291:669–672CrossRef Kamarád J, Albertini F, Arnold Z, Casoli F, Pareti L, Paoluzi A (2005) Effect of hydrostatic pressure on magnetization of Ni2+x Mn1−x Ga alloys. J Magn Magn Mater 290–291:669–672CrossRef
34.
Zurück zum Zitat Albertini F, Kamaraád J, Arnold Z, Pareti L, Villa E, Righi L (2007) Pressure effects on the magnetocaloric properties of Ni-rich and Mn-rich Ni2MnGa alloys. J Magn Magn Mater 316:364–367CrossRef Albertini F, Kamaraád J, Arnold Z, Pareti L, Villa E, Righi L (2007) Pressure effects on the magnetocaloric properties of Ni-rich and Mn-rich Ni2MnGa alloys. J Magn Magn Mater 316:364–367CrossRef
35.
Zurück zum Zitat Mandal K, Pal D, Scheerbaum N, Lyubina J, Gutfleisch O (2009) Effect of pressure on the magnetocaloric properties of nickel-rich Ni–Mn–Ga Heusler alloys. J Appl Phys 105:073509–1–073509–6 Mandal K, Pal D, Scheerbaum N, Lyubina J, Gutfleisch O (2009) Effect of pressure on the magnetocaloric properties of nickel-rich Ni–Mn–Ga Heusler alloys. J Appl Phys 105:073509–1–073509–6
36.
Zurück zum Zitat Devarajan U, Esakki Muthu S, Arumugam Sanjay Singh S, Barman SR (2013) Investigation of the influence of hydrostatic pressure on the magnetic and magnetocaloric properties of Ni2–x Mn1–x Ga (x = 0, 0.15) Heusler alloys. J Appl Phys 114:053906–1–053906–6CrossRef Devarajan U, Esakki Muthu S, Arumugam Sanjay Singh S, Barman SR (2013) Investigation of the influence of hydrostatic pressure on the magnetic and magnetocaloric properties of Ni2–x Mn1–x Ga (x = 0, 0.15) Heusler alloys. J Appl Phys 114:053906–1–053906–6CrossRef
37.
Zurück zum Zitat Mañosa L, Planesa A, Acet M (2013) Advanced materials for solid-state refrigeration. J Mater Chem A 1:4925–4936CrossRef Mañosa L, Planesa A, Acet M (2013) Advanced materials for solid-state refrigeration. J Mater Chem A 1:4925–4936CrossRef
38.
Zurück zum Zitat Stern-Taulats E, Planes A, Lloveras P, Barrio M, Tamarit J-L, Pramanick S, Majumdar S, Yüce S, Emre B, Frontera C, Mañosa L (2015) Tailoring barocaloric and magnetocaloric properties in low–hysteresis magnetic shape memory alloys. Acta Mater 96:324–332CrossRef Stern-Taulats E, Planes A, Lloveras P, Barrio M, Tamarit J-L, Pramanick S, Majumdar S, Yüce S, Emre B, Frontera C, Mañosa L (2015) Tailoring barocaloric and magnetocaloric properties in low–hysteresis magnetic shape memory alloys. Acta Mater 96:324–332CrossRef
39.
Zurück zum Zitat Mañosa L, Stern-Taulats E, Planes A, Lloveras P, Barrio M, Tamarit J-L, Emre B, Yüce S, Fabbrici S, Albertini F (2014) Barocaloric effect in metamagnetic shape memory alloys. Phys Status Solidi B 251:2114–2119CrossRef Mañosa L, Stern-Taulats E, Planes A, Lloveras P, Barrio M, Tamarit J-L, Emre B, Yüce S, Fabbrici S, Albertini F (2014) Barocaloric effect in metamagnetic shape memory alloys. Phys Status Solidi B 251:2114–2119CrossRef
40.
Zurück zum Zitat Krenke T, Duman E, Acet M, Wassermann EF, Moya X, Mañosa L, Planes A (2005) Inverse magnetocaloric effect in ferromagnetic Ni–Mn–Sn alloys. Nat Mater 4:450–454CrossRef Krenke T, Duman E, Acet M, Wassermann EF, Moya X, Mañosa L, Planes A (2005) Inverse magnetocaloric effect in ferromagnetic Ni–Mn–Sn alloys. Nat Mater 4:450–454CrossRef
41.
Zurück zum Zitat Khan M, Ali N, Stadler S (2007) Inverse magnetocaloric effect in ferromagnetic Ni50Mn37+x Sb13−x Heusler. J Appl Phys 101:053919–1–053919–3 Khan M, Ali N, Stadler S (2007) Inverse magnetocaloric effect in ferromagnetic Ni50Mn37+x Sb13−x Heusler. J Appl Phys 101:053919–1–053919–3
42.
Zurück zum Zitat Krenke T, Duman E, Acet M, Wassermann EF, Moya X, Mañosa L, Planes A, Suard E, Ouladdiaf B (2007) Magnetic superelasticity and inverse magnetocaloric effect in Ni–Mn–In. Phys Rev B 75:104414–1–104414–6CrossRef Krenke T, Duman E, Acet M, Wassermann EF, Moya X, Mañosa L, Planes A, Suard E, Ouladdiaf B (2007) Magnetic superelasticity and inverse magnetocaloric effect in Ni–Mn–In. Phys Rev B 75:104414–1–104414–6CrossRef
43.
Zurück zum Zitat Khovaylo VV, Skokov KP, Gutfleisch O, Miki H, Takagi T, Kanomata T, Koledov VV (2010) Peculiarities of the magnetocaloric properties in Ni–Mn–Sn ferromagnetic shape memory alloys. Phys Rev B 81:214406–1–214406–6CrossRef Khovaylo VV, Skokov KP, Gutfleisch O, Miki H, Takagi T, Kanomata T, Koledov VV (2010) Peculiarities of the magnetocaloric properties in Ni–Mn–Sn ferromagnetic shape memory alloys. Phys Rev B 81:214406–1–214406–6CrossRef
44.
Zurück zum Zitat Amano ME, Betancourt I, Sánchez Llamazares JL, Huerta L, Sánchez-Valdés CF (2014) Mixed-valence La0.80(Ag1–x Sr x )0.20MnO3 manganites with magnetocaloric effect. J Mater Sci 49:633–641. doi:10.1007/s10853-013-7743-5 CrossRef Amano ME, Betancourt I, Sánchez Llamazares JL, Huerta L, Sánchez-Valdés CF (2014) Mixed-valence La0.80(Ag1–x Sr x )0.20MnO3 manganites with magnetocaloric effect. J Mater Sci 49:633–641. doi:10.​1007/​s10853-013-7743-5 CrossRef
45.
Zurück zum Zitat Cherif R, Hlil EK, Ellouze M, Elhalouani F, Obbade S (2014) Study of magnetic and magnetocaloric properties of La0.6Pr0.1Ba0.3MnO3 and La0.6Pr0.1Ba0.3Mn0.9Fe0.1O3 perovskite-type manganese oxides. J Mater Sci 49:8244–8251. doi:10.1007/s10853-014-8533-4 CrossRef Cherif R, Hlil EK, Ellouze M, Elhalouani F, Obbade S (2014) Study of magnetic and magnetocaloric properties of La0.6Pr0.1Ba0.3MnO3 and La0.6Pr0.1Ba0.3Mn0.9Fe0.1O3 perovskite-type manganese oxides. J Mater Sci 49:8244–8251. doi:10.​1007/​s10853-014-8533-4 CrossRef
46.
Zurück zum Zitat Sasso CP, Pasquale M, Giudici L, Besseghini S, Villa E, Lewis LH, Lograsso TA, Schlagel DL (2006) Magnetostructural transitions and adiabatic temperature variation in polycrystal and single-crystal Ni2MnGa alloys. J Appl Phys 99:08K905–1–08K905–3CrossRef Sasso CP, Pasquale M, Giudici L, Besseghini S, Villa E, Lewis LH, Lograsso TA, Schlagel DL (2006) Magnetostructural transitions and adiabatic temperature variation in polycrystal and single-crystal Ni2MnGa alloys. J Appl Phys 99:08K905–1–08K905–3CrossRef
47.
Zurück zum Zitat Pasquale M, Sasso CP, Giudici L, Lograsso T, Schlagel D (2007) Field-driven structural phase transition and sign–switching magnetocaloric effect in Ni–Mn–Sn. Appl Phys Lett 91:131904–1–131904–3CrossRef Pasquale M, Sasso CP, Giudici L, Lograsso T, Schlagel D (2007) Field-driven structural phase transition and sign–switching magnetocaloric effect in Ni–Mn–Sn. Appl Phys Lett 91:131904–1–131904–3CrossRef
48.
Zurück zum Zitat Khovaylo VV, Skokov KP, Koshkid’ko YS, Koledov VV, Shavrov VG, Buchelnikov VD, Taskaev SV, Miki H, Takagi T, Vasiliev AN (2008) Adiabatic temperature change at first-order magnetic phase transitions: Ni2.19Mn0.81Ga as a case study. Phys Rev B 78:060403–1–060403–4CrossRef Khovaylo VV, Skokov KP, Koshkid’ko YS, Koledov VV, Shavrov VG, Buchelnikov VD, Taskaev SV, Miki H, Takagi T, Vasiliev AN (2008) Adiabatic temperature change at first-order magnetic phase transitions: Ni2.19Mn0.81Ga as a case study. Phys Rev B 78:060403–1–060403–4CrossRef
49.
Zurück zum Zitat Buchelnikov VD, Sokolovskiy VV, Taskaev SV, Khovaylo VV, Aliev AA, Khanov LN, Batdalov AB, Entel P, Miki H, Takagi T (2011) Monte Carlo simulations of the magnetocaloric effect in magnetic Ni–Mn–X (X = Ga, In) Heusler alloys. J Phys D Appl Phys 44:064012–1–064012–14CrossRef Buchelnikov VD, Sokolovskiy VV, Taskaev SV, Khovaylo VV, Aliev AA, Khanov LN, Batdalov AB, Entel P, Miki H, Takagi T (2011) Monte Carlo simulations of the magnetocaloric effect in magnetic Ni–Mn–X (X = Ga, In) Heusler alloys. J Phys D Appl Phys 44:064012–1–064012–14CrossRef
50.
Zurück zum Zitat Kazakov AP, Prudnikov VN, Granovsky AB, Zhukov AP, Gonzalez J, Dubenko I, Pathak AK, Stadler S, Ali N (2011) Direct measurements of field-induced adiabatic temperature changes near compound phase transitions in Ni–Mn–In based Heusler alloys. Appl Phys Lett 98:131911–1–131911–3CrossRef Kazakov AP, Prudnikov VN, Granovsky AB, Zhukov AP, Gonzalez J, Dubenko I, Pathak AK, Stadler S, Ali N (2011) Direct measurements of field-induced adiabatic temperature changes near compound phase transitions in Ni–Mn–In based Heusler alloys. Appl Phys Lett 98:131911–1–131911–3CrossRef
51.
Zurück zum Zitat Porcari G, Fabbrici S, Pernechele C, Albertini F, Buzzi M, Paoluzi A, Kamarad J, Arnold Z, Solzi M (2012) Reverse magnetostructural transformation and adiabatic temperature change in Co- and In-substituted Ni–Mn–Ga alloys. Phys Rev B 85:024414–1–024414–7CrossRef Porcari G, Fabbrici S, Pernechele C, Albertini F, Buzzi M, Paoluzi A, Kamarad J, Arnold Z, Solzi M (2012) Reverse magnetostructural transformation and adiabatic temperature change in Co- and In-substituted Ni–Mn–Ga alloys. Phys Rev B 85:024414–1–024414–7CrossRef
52.
Zurück zum Zitat Porcari G, Cugini F, Fabbrici S, Pernechele C, Albertini F, Buzzi M, Mangia M, Solzi M (2012) Convergence of direct and indirect methods in the magnetocaloric study of first order transformations: the case of Ni–Co–Mn–Ga Heusler alloys. Phys Rev B 86:104432–1–104432–5CrossRef Porcari G, Cugini F, Fabbrici S, Pernechele C, Albertini F, Buzzi M, Mangia M, Solzi M (2012) Convergence of direct and indirect methods in the magnetocaloric study of first order transformations: the case of Ni–Co–Mn–Ga Heusler alloys. Phys Rev B 86:104432–1–104432–5CrossRef
Metadaten
Titel
Barocaloric effect associated with magneto-structural transformation studied by an effectively indirect method for the Ni58.3Mn17.1Ga24.6 Heusler alloy
verfasst von
X. J. He
K. Xu
S. X. Wei
Y. L. Zhang
Z. Li
C. Jing
Publikationsdatum
14.11.2016
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 5/2017
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-016-0585-1

Weitere Artikel der Ausgabe 5/2017

Journal of Materials Science 5/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.