Skip to main content

2018 | OriginalPaper | Buchkapitel

4. Baseline Wander Correction in Pulse Waveforms Using Wavelet-Based Cascaded Adaptive Filter

verfasst von : David Zhang, Wangmeng Zuo, Peng Wang

Erschienen in: Computational Pulse Signal Analysis

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Quantifying pulse diagnosis is to acquire and record pulse waveforms by a set of sensor firstly and then analyze these pulse waveforms. However, respiration and artifact motion during pulse waveform acquisition can introduce baseline drift. It is necessary, therefore, to remove the pulse waveform’s baseline drift in order to perform accurate pulse waveform analysis. This chapter presents a wavelet-based cascaded adaptive filter (CAF) to remove the baseline drift of pulse waveform. To evaluate the level of baseline drift, we introduce a criterion: energy ratio (ER) of pulse waveform to its baseline drift. If the ER is more than a given threshold, the baseline drift can be removed only by cubic spline estimation; otherwise it must be filtered by, in sequence, discrete Meyer wavelet filter and the cubic spline estimation. Compared with traditional methods such as cubic spline estimation, morphology filter, and linear-phase finite impulse response (FIR) least-squares-error digital filter, the experimental results on 50 simulated and 500 real pulse signals demonstrate the power of CAF filter both in removing baseline drift and in preserving the diagnostic information of pulse waveforms. This CAF also can be used to remove the baseline drift of other physiological signals, such as ECG and so on.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Q. Bian, The Classic of Difficulties (Nan Jing), Tianjing Technology Press, 1979. Q. Bian, The Classic of Difficulties (Nan Jing), Tianjing Technology Press, 1979.
2.
Zurück zum Zitat O.R. Michael, D.F. Edward, “Pulse pressure: is this a clinically useful risk factor?” Hypertension (1999) 372–374. O.R. Michael, D.F. Edward, “Pulse pressure: is this a clinically useful risk factor?” Hypertension (1999) 372–374.
3.
Zurück zum Zitat Y.W. Ling, “Frequency distribution of human pulse spectra,” IEEE Trans. Biomed. Eng. 32 (1985) 245. Y.W. Ling, “Frequency distribution of human pulse spectra,” IEEE Trans. Biomed. Eng. 32 (1985) 245.
4.
Zurück zum Zitat W.A. Lu, Y.Y. Wang, W.K. Wang, “Pulse analysis of patients with severe liver problems,” IEEE Eng. Med. Biol. 18 (1) (1999) 73–75. W.A. Lu, Y.Y. Wang, W.K. Wang, “Pulse analysis of patients with severe liver problems,” IEEE Eng. Med. Biol. 18 (1) (1999) 73–75.
5.
Zurück zum Zitat J. Ling, D.C. Winter, B.L. Robey, “Cardiac output monitor using fuzzy logic blood pressure analysis,” U.S. Patent No. 6007491, December 1999. J. Ling, D.C. Winter, B.L. Robey, “Cardiac output monitor using fuzzy logic blood pressure analysis,” U.S. Patent No. 6007491, December 1999.
6.
Zurück zum Zitat Inukai, et al., “System and method for evaluating the autonomic nervous system of a living subject,” U.S. Patent No. 5830148, November 1998. Inukai, et al., “System and method for evaluating the autonomic nervous system of a living subject,” U.S. Patent No. 5830148, November 1998.
7.
Zurück zum Zitat M.F. O’Rourke, R.P. Kelly, “Wave reflection in the systemic circulation and its implications in ventricular function,” J. Hypertension 11 (1993) 327–337. M.F. O’Rourke, R.P. Kelly, “Wave reflection in the systemic circulation and its implications in ventricular function,” J. Hypertension 11 (1993) 327–337.
8.
Zurück zum Zitat M.F. O’Rourke, J. Lei, D.E. Gallagher, A.P. Avolio, “Determination of the ascending aortic pressure wave augmentation from the radial artery pressure pulse contour in humans,” Circulation 92 (1995) 745. M.F. O’Rourke, J. Lei, D.E. Gallagher, A.P. Avolio, “Determination of the ascending aortic pressure wave augmentation from the radial artery pressure pulse contour in humans,” Circulation 92 (1995) 745.
9.
Zurück zum Zitat Y.Z. Yoon, M.H. Lee, K.S. Soh, “Pulse type classification by varying contact pressure,” IEEE Eng. Med. Biol. November/December (2000) 106–110. Y.Z. Yoon, M.H. Lee, K.S. Soh, “Pulse type classification by varying contact pressure,” IEEE Eng. Med. Biol. November/December (2000) 106–110.
10.
Zurück zum Zitat L.S. Xu, K.Q. Wang, D. Zhang, “Modern researches on traditional Chinese pulse diagnosis,” Eur. J. Oriental Med. 4 (5) (2004) 46–54. L.S. Xu, K.Q. Wang, D. Zhang, “Modern researches on traditional Chinese pulse diagnosis,” Eur. J. Oriental Med. 4 (5) (2004) 46–54.
11.
Zurück zum Zitat S.Z. Li, Pulse Diagnosis, Paradigm Press, 1985. S.Z. Li, Pulse Diagnosis, Paradigm Press, 1985.
12.
Zurück zum Zitat L. Li, Z.Z. Wang, “Study on interval variability of arterial pulse,” Proceedings of 21st Annual Conference and the 1999 Annual Fall Meeting of the Biomedical Engineering Society BMES/EMBS Conference, vol. 1, 1999, p. 223. L. Li, Z.Z. Wang, “Study on interval variability of arterial pulse,” Proceedings of 21st Annual Conference and the 1999 Annual Fall Meeting of the Biomedical Engineering Society BMES/EMBS Conference, vol. 1, 1999, p. 223.
13.
Zurück zum Zitat J. Allen, A. Murray, “Variability of photoplethysmography peripheral pulse measurements at the ears, thumbs and toes,” A. Science, Measurement and Technology, IEE Proceedings, vol. 147, November 2000, pp. 403–407. J. Allen, A. Murray, “Variability of photoplethysmography peripheral pulse measurements at the ears, thumbs and toes,” A. Science, Measurement and Technology, IEE Proceedings, vol. 147, November 2000, pp. 403–407.
14.
Zurück zum Zitat C.R. Meyer, H.N. Keiser, “Electrocardiogram baseline noise estimation and removal using cubic spline and state space computing techniques,” Comput. Biomed. Res. 10 (1977) 459–470. C.R. Meyer, H.N. Keiser, “Electrocardiogram baseline noise estimation and removal using cubic spline and state space computing techniques,” Comput. Biomed. Res. 10 (1977) 459–470.
15.
Zurück zum Zitat Y. Sun, K.L. Chan, S.M. Krishnan, “ECG signal conditioning by morphological filtering,” Comput. Biol. Med. 32 (2002) 465–479.CrossRef Y. Sun, K.L. Chan, S.M. Krishnan, “ECG signal conditioning by morphological filtering,” Comput. Biol. Med. 32 (2002) 465–479.CrossRef
16.
Zurück zum Zitat Sörnmo, “Time-varying filtering for removal of baseline wander in exercise ECGs,” Computers Cardiology Proceedings, 1991, pp. 145–148. Sörnmo, “Time-varying filtering for removal of baseline wander in exercise ECGs,” Computers Cardiology Proceedings, 1991, pp. 145–148.
17.
Zurück zum Zitat P. Strobach, K.A. Fuchs, “Event-synchronous cancellation of the heat interference in biomedical signal,” IEEE Trans. Biomed. Eng. 41 (4) (1994) 343–350.CrossRef P. Strobach, K.A. Fuchs, “Event-synchronous cancellation of the heat interference in biomedical signal,” IEEE Trans. Biomed. Eng. 41 (4) (1994) 343–350.CrossRef
18.
Zurück zum Zitat N.V. Thakor, Y.S. Zhu, “Application of adaptive filtering to ECG analysis: noise cancellation and arrhythmia detection,” IEEE Trans. Biomed. Eng. 38 (8) (1991) 785–794.CrossRef N.V. Thakor, Y.S. Zhu, “Application of adaptive filtering to ECG analysis: noise cancellation and arrhythmia detection,” IEEE Trans. Biomed. Eng. 38 (8) (1991) 785–794.CrossRef
19.
Zurück zum Zitat L. Pablo, J. Raimon, P. Caminal, “The adaptive linear combiner with a periodic-impulse reference input as a linear comb filter,” Signal Process. 48 (3) (1996) 193–203.CrossRef L. Pablo, J. Raimon, P. Caminal, “The adaptive linear combiner with a periodic-impulse reference input as a linear comb filter,” Signal Process. 48 (3) (1996) 193–203.CrossRef
20.
Zurück zum Zitat C.C. Chiu, S.J. Yeh, “A tentative approach based on Wiener filter for the reduction of respiratory effect in pulse signals,” Proceedings of 19th International Conference of IEEE/EMBS, October 1997, pp. 1394–1397. C.C. Chiu, S.J. Yeh, “A tentative approach based on Wiener filter for the reduction of respiratory effect in pulse signals,” Proceedings of 19th International Conference of IEEE/EMBS, October 1997, pp. 1394–1397.
21.
Zurück zum Zitat V. Shusterman, S.I. Shah, A. Beigel, et al., “Enhancing the precision of ECG baseline correction: selective filtering and removal of residual error,” Comput. Biomed. Res. 33 (2000) 144–160.CrossRef V. Shusterman, S.I. Shah, A. Beigel, et al., “Enhancing the precision of ECG baseline correction: selective filtering and removal of residual error,” Comput. Biomed. Res. 33 (2000) 144–160.CrossRef
22.
Zurück zum Zitat L.S. Xu, D. Zhang, K.Q. Wang, “Wavelet-based cascaded adaptive filter for removing baseline drift in pulse waveforms,” IEEE Trans. Biomed. Eng. 52 (11) (2005) 1973–1975.CrossRef L.S. Xu, D. Zhang, K.Q. Wang, “Wavelet-based cascaded adaptive filter for removing baseline drift in pulse waveforms,” IEEE Trans. Biomed. Eng. 52 (11) (2005) 1973–1975.CrossRef
23.
Zurück zum Zitat J.A. Van, T.S. Schilder, “Removal of baseline wander and power-line interference from the ECG by an efficient FIR filter with a reduced number of taps,” IEEE Trans. Biomed. Eng. 32 (12) (1985) 1052–1060. J.A. Van, T.S. Schilder, “Removal of baseline wander and power-line interference from the ECG by an efficient FIR filter with a reduced number of taps,” IEEE Trans. Biomed. Eng. 32 (12) (1985) 1052–1060.
24.
Zurück zum Zitat W. Huh, Y.B. Park, H.K. Kim, et al., “Development of pulse rate detection system for oriental medicine,” Proceedings of 19th International Conference-IEEE/EMBS, October 1997, pp. 2406–2408. W. Huh, Y.B. Park, H.K. Kim, et al., “Development of pulse rate detection system for oriental medicine,” Proceedings of 19th International Conference-IEEE/EMBS, October 1997, pp. 2406–2408.
25.
Zurück zum Zitat B.H. Wang, J.L. Xiang, “Detecting system and power spectral analysis of pulse signals of human body,” Proceedings of ICSP 1998, 1998, pp. 1646–1649. B.H. Wang, J.L. Xiang, “Detecting system and power spectral analysis of pulse signals of human body,” Proceedings of ICSP 1998, 1998, pp. 1646–1649.
26.
Zurück zum Zitat S. Mallat, “A theory for multiresolution signal decomposition: the wavelet representation,” IEEE Pattern Anal. Mach. Intell. 11 (7) (1989) 674–693.CrossRef S. Mallat, “A theory for multiresolution signal decomposition: the wavelet representation,” IEEE Pattern Anal. Mach. Intell. 11 (7) (1989) 674–693.CrossRef
27.
Zurück zum Zitat M. Unser, A. Aldroubi, “A review of wavelets in biomedical application,” Proc. IEEE 84 (1996) 626–638.CrossRef M. Unser, A. Aldroubi, “A review of wavelets in biomedical application,” Proc. IEEE 84 (1996) 626–638.CrossRef
28.
Zurück zum Zitat I. Daubechies, Ten Lectures on Wavelets, SIAM, Philadelphia, PA, 1992. I. Daubechies, Ten Lectures on Wavelets, SIAM, Philadelphia, PA, 1992.
29.
Zurück zum Zitat S. Conforto, T. D’Alessio, S. Pignatelli, “Optimal rejection of movement artifacts from myoelectric signals by means of a wavelet filtering procedure,” J. Electromyography Kinesiol. (1999) 47–57.CrossRef S. Conforto, T. D’Alessio, S. Pignatelli, “Optimal rejection of movement artifacts from myoelectric signals by means of a wavelet filtering procedure,” J. Electromyography Kinesiol. (1999) 47–57.CrossRef
30.
Zurück zum Zitat A.J. Jerri, “The Gibbs Phenomenon in Fourier Analysis,” Splines and Wavelet Approximations, Kluwer Academic Publishers, Dordrecht, 1998.MATH A.J. Jerri, “The Gibbs Phenomenon in Fourier Analysis,” Splines and Wavelet Approximations, Kluwer Academic Publishers, Dordrecht, 1998.MATH
31.
Zurück zum Zitat G.M. Friesen, T.C. Jannett, M.A. Jadallah, et al., “A comparison of the noise sensitivity of nine QRS detection algorithms,” IEEE Trans. Biomed. Eng. 37 (1990) 85–98.CrossRef G.M. Friesen, T.C. Jannett, M.A. Jadallah, et al., “A comparison of the noise sensitivity of nine QRS detection algorithms,” IEEE Trans. Biomed. Eng. 37 (1990) 85–98.CrossRef
32.
Zurück zum Zitat B.U. Kohler, C. Hennig, R. Orglmeister, “The principles of software QRS detection,” IEEE Eng. Med. Biol. Mag. 21 (1) (2002) 42–57.CrossRef B.U. Kohler, C. Hennig, R. Orglmeister, “The principles of software QRS detection,” IEEE Eng. Med. Biol. Mag. 21 (1) (2002) 42–57.CrossRef
33.
Zurück zum Zitat M.A. Navakatikyan, C.J. Barrett, G.A. Head, J.H. Ricketts, “A real-time algorithm for the quantification of blood pressure waveforms,” IEEE Trans. Biomed. Eng. 49 (7) (2002) 662–670.CrossRef M.A. Navakatikyan, C.J. Barrett, G.A. Head, J.H. Ricketts, “A real-time algorithm for the quantification of blood pressure waveforms,” IEEE Trans. Biomed. Eng. 49 (7) (2002) 662–670.CrossRef
34.
Zurück zum Zitat G. Gratze, J. Fortin, A. Holler, K. Grasenick, G. Pfurtscheller, P. Wach, J. Schonegger, P. Kotanko, F. Skrabal, “A software package for noninvasive, real-time beat-to-beat monitoring of stroke volume, blood pressure, total peripheral resistance and for assessment of autonomic function,” Comput. Biol. Med. 28 (1998) 121–142. G. Gratze, J. Fortin, A. Holler, K. Grasenick, G. Pfurtscheller, P. Wach, J. Schonegger, P. Kotanko, F. Skrabal, “A software package for noninvasive, real-time beat-to-beat monitoring of stroke volume, blood pressure, total peripheral resistance and for assessment of autonomic function,” Comput. Biol. Med. 28 (1998) 121–142.
35.
Zurück zum Zitat K.G. Belani, J.J. Buckley, M.O. Poliac, “Accuracy of radial artery blood pressure determination with the vasotrac,” Canad. J. Anesthesiol. 46 (1999) 488–496.CrossRef K.G. Belani, J.J. Buckley, M.O. Poliac, “Accuracy of radial artery blood pressure determination with the vasotrac,” Canad. J. Anesthesiol. 46 (1999) 488–496.CrossRef
Metadaten
Titel
Baseline Wander Correction in Pulse Waveforms Using Wavelet-Based Cascaded Adaptive Filter
verfasst von
David Zhang
Wangmeng Zuo
Peng Wang
Copyright-Jahr
2018
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-4044-3_4