Skip to main content

2018 | OriginalPaper | Buchkapitel

4. Basic Equations for Linear Thermoporoelasticity

verfasst von : Teruo Yamashita, Akito Tsutsumi

Erschienen in: Involvement of Fluids in Earthquake Ruptures

Verlag: Springer Japan

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this chapter, we present mathematical theory of linear poroelasticity, following earlier works. Since high-pressure fluids seem to be deeply involved in the generation of earthquakes as exemplified in the preceding chapters, it will be appropriate to apply the poroelasticity theory to understanding of crustal deformation and generation mechanism of earthquake rupture. Here we consider only a simple case in which the porous medium is homogeneous and isotropic; the pore space is also assumed to be connected and saturated with a single kind of pore fluid. We present basic equations of linear poroelasticity in Sects. 4.34.9 and 4.12, after shortly reviewing the historical development of poroelasticity theory in Sect. 4.1 and introducing key concepts in Sect. 4.2. While we focus on the deformation under isothermal condition in earlier sections, nonisothermal condition is assumed in the analysis in later sections. Since high temperature elevation is expected to occur during dynamic slip because of high confining pressure, temperature change will actually affect the fluid pressure change. Some specific effects are incorporated in Sects. 4.10 and 4.14 so that the equations may be applicable to the modeling of earthquake rupture. We lastly address a simple problem of quasi-static poroelastic deformation applying the linear poroelasticity theory in Sect. 4.15.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Bernabé Y, Mok U, Evans B (2003) Permeability-porosity relationships in rocks subjected to various evolution processes. Pure Appl Geophys 160:937–960CrossRef Bernabé Y, Mok U, Evans B (2003) Permeability-porosity relationships in rocks subjected to various evolution processes. Pure Appl Geophys 160:937–960CrossRef
Zurück zum Zitat Biot MA (1941) General theory of three-dimensional consolidation. J Appl Phys 12:155–164CrossRef Biot MA (1941) General theory of three-dimensional consolidation. J Appl Phys 12:155–164CrossRef
Zurück zum Zitat Biot MA (1956a) General solutions of the equations of elasticity and consolidation for a porous material. J Appl Mech 78:91–96 Biot MA (1956a) General solutions of the equations of elasticity and consolidation for a porous material. J Appl Mech 78:91–96
Zurück zum Zitat Biot MA (1956b) Theory of propagation of elastic waves in a fluid saturated porous solid. I—Low-frequency range. J Acoust Soc Am 28:168–178CrossRef Biot MA (1956b) Theory of propagation of elastic waves in a fluid saturated porous solid. I—Low-frequency range. J Acoust Soc Am 28:168–178CrossRef
Zurück zum Zitat Biot MA (1956c) Theory of propagation of elastic waves in a fluid saturated porous solid. II–Higher-frequency range. J Acoust Soc Am 28:179–191CrossRef Biot MA (1956c) Theory of propagation of elastic waves in a fluid saturated porous solid. II–Higher-frequency range. J Acoust Soc Am 28:179–191CrossRef
Zurück zum Zitat Biot MA (1977) Variational Lagrangian-thermodynamics of nonisothermal finite strain mechanics of porous solids and thermomolecular diffusion. Int J Solids Struct 13:579–597CrossRef Biot MA (1977) Variational Lagrangian-thermodynamics of nonisothermal finite strain mechanics of porous solids and thermomolecular diffusion. Int J Solids Struct 13:579–597CrossRef
Zurück zum Zitat Bizzarri A, Cocco M (2006) A thermal pressurization model for the spontaneous dynamic rupture propagation on a three-dimensional fault: 1. Methodological approach. J Geophys Res 111:B05303. doi:10.1029/2005JB003862 Bizzarri A, Cocco M (2006) A thermal pressurization model for the spontaneous dynamic rupture propagation on a three-dimensional fault: 1. Methodological approach. J Geophys Res 111:B05303. doi:10.​1029/​2005JB003862
Zurück zum Zitat Booker JR, Savvidou C (l985) Consolidation around a point heat source. Int J Numer Anal Met 9:173–184 Booker JR, Savvidou C (l985) Consolidation around a point heat source. Int J Numer Anal Met 9:173–184
Zurück zum Zitat Brace WF (1977) Permeability from resistivity and pore shape. J Geophys Res 82:3343–3349CrossRef Brace WF (1977) Permeability from resistivity and pore shape. J Geophys Res 82:3343–3349CrossRef
Zurück zum Zitat Brace WF (1980) Permeability of crystalline and argillaceous rocks. Int J Rock Mech Min 17:241–251CrossRef Brace WF (1980) Permeability of crystalline and argillaceous rocks. Int J Rock Mech Min 17:241–251CrossRef
Zurück zum Zitat Brace WF (1984) Permeability of crystalline rocks: New in situ measurements. J Geophys Res 89:4327–4330CrossRef Brace WF (1984) Permeability of crystalline rocks: New in situ measurements. J Geophys Res 89:4327–4330CrossRef
Zurück zum Zitat Brantut N, Schubnel A, Rouzaud JN, Brunet F, Shimamoto T (2008) High velocity frictional properties of a clay bearing fault gouge and implications of earthquake mechanics. J Geophys Res 113:B14401. doi:10.1029/2007JB005551 CrossRef Brantut N, Schubnel A, Rouzaud JN, Brunet F, Shimamoto T (2008) High velocity frictional properties of a clay bearing fault gouge and implications of earthquake mechanics. J Geophys Res 113:B14401. doi:10.​1029/​2007JB005551 CrossRef
Zurück zum Zitat Burridge R, Keller JB (1981) Poroelasticity equations derived from microstructure. J Acoust Soc Am 70:1140–1146CrossRef Burridge R, Keller JB (1981) Poroelasticity equations derived from microstructure. J Acoust Soc Am 70:1140–1146CrossRef
Zurück zum Zitat Carman P (1937) Fluid flow through a granular bed. Trans Inst Chem Eng 15:150–167 Carman P (1937) Fluid flow through a granular bed. Trans Inst Chem Eng 15:150–167
Zurück zum Zitat Cleary MP (1977) Fundamental solutions for a fluid-saturated porous solid. Int J Solids Struct 13:785–806CrossRef Cleary MP (1977) Fundamental solutions for a fluid-saturated porous solid. Int J Solids Struct 13:785–806CrossRef
Zurück zum Zitat Costa A (2006) Permeability-porosity relationship: a reexamination of the Kozeny-Carman equation based on a fractal pore-space geometry assumption. Geophys Res Lett 33:L02318. doi:10.1029/2005GL025134 CrossRef Costa A (2006) Permeability-porosity relationship: a reexamination of the Kozeny-Carman equation based on a fractal pore-space geometry assumption. Geophys Res Lett 33:L02318. doi:10.​1029/​2005GL025134 CrossRef
Zurück zum Zitat Coussy O (2004) Poromechanics. Wiley, New York Coussy O (2004) Poromechanics. Wiley, New York
Zurück zum Zitat David C, Wong T, Zhu W, Zhang J (1994) Laboratory measurement of compaction-induced permeability change in porous rocks: Implications for the generation and maintenance of pore pressure excess in the crust. Pure Appl Geophys 143:425–456CrossRef David C, Wong T, Zhu W, Zhang J (1994) Laboratory measurement of compaction-induced permeability change in porous rocks: Implications for the generation and maintenance of pore pressure excess in the crust. Pure Appl Geophys 143:425–456CrossRef
Zurück zum Zitat Detournay E, Cheng AHD (1993) Fundamentals of poroelasticity. In: Fairhurst C (ed) Comprehensive rock engineering: principles, practice and projects, vol II. Analysis and design method. Pergamon Press, Oxford, pp 113–171 Detournay E, Cheng AHD (1993) Fundamentals of poroelasticity. In: Fairhurst C (ed) Comprehensive rock engineering: principles, practice and projects, vol II. Analysis and design method. Pergamon Press, Oxford, pp 113–171
Zurück zum Zitat Dvorkin J, Nur A (1993) Dynamic poroelasticity: a unified model with the squirt and the Biot mechanism. Geophysics 58:524–533CrossRef Dvorkin J, Nur A (1993) Dynamic poroelasticity: a unified model with the squirt and the Biot mechanism. Geophysics 58:524–533CrossRef
Zurück zum Zitat Faulkner DR, Rutter EH (2001) Can the maintenance of overpressured fluids in large strike-slip fault zones explain their apparent weakness? Geology 29:503–506CrossRef Faulkner DR, Rutter EH (2001) Can the maintenance of overpressured fluids in large strike-slip fault zones explain their apparent weakness? Geology 29:503–506CrossRef
Zurück zum Zitat Fielding EJ, Lundgren PR, Bürgmann R, Funning GJ (2009) Shallow fault-zone dilatancy recovery after the 2003 Bam earthquake in Iran. Nature 458:64–68. doi:10.1038/nature07817 CrossRef Fielding EJ, Lundgren PR, Bürgmann R, Funning GJ (2009) Shallow fault-zone dilatancy recovery after the 2003 Bam earthquake in Iran. Nature 458:64–68. doi:10.​1038/​nature07817 CrossRef
Zurück zum Zitat Geertsma J (1957) The effect of fluid pressure decline on volumetric changes of porous rocks. Petrol Trans AIME 210:331–340 Geertsma J (1957) The effect of fluid pressure decline on volumetric changes of porous rocks. Petrol Trans AIME 210:331–340
Zurück zum Zitat Guéguen Y, Dormieux L, Boutéca M (2004) Fundamentals of poromechanics. In: Guéguen Y, Boutéca M (eds) Mechancs of fluid-saturated rocks. Academic Press, Amsterdam, pp 1–54 Guéguen Y, Dormieux L, Boutéca M (2004) Fundamentals of poromechanics. In: Guéguen Y, Boutéca M (eds) Mechancs of fluid-saturated rocks. Academic Press, Amsterdam, pp 1–54
Zurück zum Zitat Hainzl S, Ogata Y (2005) Detecting fluid signals in seismicity data through statistical earthquake modeling. J Geophys Res 110:B05S07. doi:10.1029/2004JB003247 Hainzl S, Ogata Y (2005) Detecting fluid signals in seismicity data through statistical earthquake modeling. J Geophys Res 110:B05S07. doi:10.​1029/​2004JB003247
Zurück zum Zitat Hamada Y, Hirono T, Tanikawa W, Song W (2009) Energy taken up by co-seismic chemical reactions during a large earthquake: An example from the 1999 Taiwan Chi-Chi earthquake. Geophys Res Lett 36:doi:10.1029/2008GL036772 Hamada Y, Hirono T, Tanikawa W, Song W (2009) Energy taken up by co-seismic chemical reactions during a large earthquake: An example from the 1999 Taiwan Chi-Chi earthquake. Geophys Res Lett 36:doi:10.​1029/​2008GL036772
Zurück zum Zitat Hillers G, Miller SA (2006) Stability regimes of a dilatant, fluid-infiltrated fault plane in a three-dimensional elastic solid. J Geophys Res 111:B08304. doi:10.1029/2005JB003872 Hillers G, Miller SA (2006) Stability regimes of a dilatant, fluid-infiltrated fault plane in a three-dimensional elastic solid. J Geophys Res 111:B08304. doi:10.​1029/​2005JB003872
Zurück zum Zitat Hirono T, Fujimoto K, Yokoyama T, Hamada Y, Tanikawa W, Tadai O, Mishima T, Tanimizu M, Lin W, Soh W, Song SR (2008) Clay mineral reactions caused by frictional heating during an earthquake: an example from the Taiwan Chelungpu fault. Geophys Res Lett 35.doi:10.1029/2008GL034476 Hirono T, Fujimoto K, Yokoyama T, Hamada Y, Tanikawa W, Tadai O, Mishima T, Tanimizu M, Lin W, Soh W, Song SR (2008) Clay mineral reactions caused by frictional heating during an earthquake: an example from the Taiwan Chelungpu fault. Geophys Res Lett 35.doi:10.​1029/​2008GL034476
Zurück zum Zitat Kanagawa K, Cox SF, Zhang S (2000) Effects of dissolution-precipitation processes on the strength and mechanical behavior of quartz gouge at high-temperature hydrothermal conditions. J Geophys Res 105:11115–11126CrossRef Kanagawa K, Cox SF, Zhang S (2000) Effects of dissolution-precipitation processes on the strength and mechanical behavior of quartz gouge at high-temperature hydrothermal conditions. J Geophys Res 105:11115–11126CrossRef
Zurück zum Zitat Kozeny J (1927) Uber kapillare Leitung der Wasser in Boden, Sitzungsber. Akad Wiss Wien 136:271–306 Kozeny J (1927) Uber kapillare Leitung der Wasser in Boden, Sitzungsber. Akad Wiss Wien 136:271–306
Zurück zum Zitat Lachenbruch AH (1980) Frictional heating, fluid pressure, and the resistance to fault motion. J Geophys Res 85:6097–6122CrossRef Lachenbruch AH (1980) Frictional heating, fluid pressure, and the resistance to fault motion. J Geophys Res 85:6097–6122CrossRef
Zurück zum Zitat Lee TC, Delaney PT (1987) Frictional heating and pore pressure rise due to a fault slip. Geophys J R Astron Soc 88:569–591CrossRef Lee TC, Delaney PT (1987) Frictional heating and pore pressure rise due to a fault slip. Geophys J R Astron Soc 88:569–591CrossRef
Zurück zum Zitat Lockner DA, Byerlee JD (1994) Dilatancy in hydraulically isolated faults and the suppression of instability. Geophys Res Lett 21:2353–2356CrossRef Lockner DA, Byerlee JD (1994) Dilatancy in hydraulically isolated faults and the suppression of instability. Geophys Res Lett 21:2353–2356CrossRef
Zurück zum Zitat Marone C, Raleigh CB, Scholz CH (1990) Frictional behavior and constitutive modeling of simulated fault gouge. J Geophys Res 95:7007–7025CrossRef Marone C, Raleigh CB, Scholz CH (1990) Frictional behavior and constitutive modeling of simulated fault gouge. J Geophys Res 95:7007–7025CrossRef
Zurück zum Zitat Mase CW, Smith L (1985) Pore—fluid pressures and frictional heating on a fault surface. Pure appl Geophys 122:583–607CrossRef Mase CW, Smith L (1985) Pore—fluid pressures and frictional heating on a fault surface. Pure appl Geophys 122:583–607CrossRef
Zurück zum Zitat Mase CW, Smith L (1987) Effects of frictional heating on the thermal, hydrologic, and mechanical response of a fault. J Geophys Res 92:6249–6272CrossRef Mase CW, Smith L (1987) Effects of frictional heating on the thermal, hydrologic, and mechanical response of a fault. J Geophys Res 92:6249–6272CrossRef
Zurück zum Zitat McTigue DF (1986) Thermoelastic response of fluid-saturated porous rock. J Geophys Res 91:9533–9542CrossRef McTigue DF (1986) Thermoelastic response of fluid-saturated porous rock. J Geophys Res 91:9533–9542CrossRef
Zurück zum Zitat McTigue DF (1990) Flow to a heated borehole in porous, thermoelastic rock: analysis. Water Resour Res 26:1763–1774CrossRef McTigue DF (1990) Flow to a heated borehole in porous, thermoelastic rock: analysis. Water Resour Res 26:1763–1774CrossRef
Zurück zum Zitat Miller SA, Collettini C, Chiaraluce L, Cocco M, Barchi M, Kaus BJP (2004) Aftershocks driven by a high pressure CO2 source at depth. Nature 427:724–727. doi:10.1038/nature02251 CrossRef Miller SA, Collettini C, Chiaraluce L, Cocco M, Barchi M, Kaus BJP (2004) Aftershocks driven by a high pressure CO2 source at depth. Nature 427:724–727. doi:10.​1038/​nature02251 CrossRef
Zurück zum Zitat Noda H, Lapusta N (2010) Three-dimensional earthquake sequence simulations with evolving temperature and pore pressure due to shear heating: effect of heterogeneous hydraulic diffusivity. J Geophys Res 115:B12314. doi:10.1029/2010JB007780 CrossRef Noda H, Lapusta N (2010) Three-dimensional earthquake sequence simulations with evolving temperature and pore pressure due to shear heating: effect of heterogeneous hydraulic diffusivity. J Geophys Res 115:B12314. doi:10.​1029/​2010JB007780 CrossRef
Zurück zum Zitat Nur A, Byerlee JD (1971) An exact effective stress law for elastic deformation of rock with fluids. J Geophys Res 76:6414–6419CrossRef Nur A, Byerlee JD (1971) An exact effective stress law for elastic deformation of rock with fluids. J Geophys Res 76:6414–6419CrossRef
Zurück zum Zitat Okazaki K, Katayama I (2015) Slow stick slip of antigorite serpentinite under hydrothermal conditions as a possible mechanism for slow earthquakes. Geophys Res Lett 42:1099–1104. doi:10.1002/2014GL062735 CrossRef Okazaki K, Katayama I (2015) Slow stick slip of antigorite serpentinite under hydrothermal conditions as a possible mechanism for slow earthquakes. Geophys Res Lett 42:1099–1104. doi:10.​1002/​2014GL062735 CrossRef
Zurück zum Zitat Palciauskas VV, Domenico PA (1982) Characterization of drained and undrained response of thermally loaded repository rocks. Water Resour Res 18:281–290CrossRef Palciauskas VV, Domenico PA (1982) Characterization of drained and undrained response of thermally loaded repository rocks. Water Resour Res 18:281–290CrossRef
Zurück zum Zitat Paterson MS, Wong TF (2005) Experimental rock deformation—the brittle field. Springer, Heidelberg Paterson MS, Wong TF (2005) Experimental rock deformation—the brittle field. Springer, Heidelberg
Zurück zum Zitat Platt JD, Rudnicki JW, Rice JR (2014) Stability and localization of rapid shear in fluid-saturated fault gouge: 2. Localized zone width and strength evolution. J Geophys Res 119:4334–4359. doi:10.1002/2013JB010711 CrossRef Platt JD, Rudnicki JW, Rice JR (2014) Stability and localization of rapid shear in fluid-saturated fault gouge: 2. Localized zone width and strength evolution. J Geophys Res 119:4334–4359. doi:10.​1002/​2013JB010711 CrossRef
Zurück zum Zitat Pride SR, Gangi AF, Morgan FF (1992) Deriving the equations of motion for porous isotropic media. J Acoust Soc Am 92:3278–3290CrossRef Pride SR, Gangi AF, Morgan FF (1992) Deriving the equations of motion for porous isotropic media. J Acoust Soc Am 92:3278–3290CrossRef
Zurück zum Zitat Rice JR, Cleary MP (1976) Some basic stress-diffusion solutions for fluid-saturated elastic porous media with compressible constituents. Rev Geophys Space Phys 14:227–241CrossRef Rice JR, Cleary MP (1976) Some basic stress-diffusion solutions for fluid-saturated elastic porous media with compressible constituents. Rev Geophys Space Phys 14:227–241CrossRef
Zurück zum Zitat Rice JR (1992) Fault stress states, pore pressure distributions, and the weakness of the San Andreas Fault. In: Evans B, Wong TF (eds) International geophysics, vol 51. Academic Press, Amsterdam, pp 475–503 Rice JR (1992) Fault stress states, pore pressure distributions, and the weakness of the San Andreas Fault. In: Evans B, Wong TF (eds) International geophysics, vol 51. Academic Press, Amsterdam, pp 475–503
Zurück zum Zitat Roeloffs AV (1988) Fault stability changes induced beneath a reservoir with cyclic variations in water level. J Geophys Res 93:2107–2124CrossRef Roeloffs AV (1988) Fault stability changes induced beneath a reservoir with cyclic variations in water level. J Geophys Res 93:2107–2124CrossRef
Zurück zum Zitat Ruina A (1983) Slip instability and state variable friction laws. J Geophys Res 88:10359–10370 Ruina A (1983) Slip instability and state variable friction laws. J Geophys Res 88:10359–10370
Zurück zum Zitat Rudnicki JW (1986) Fluid mass sources and point forces in linear elastic diffusive solids. Mech Mater 5:383–393CrossRef Rudnicki JW (1986) Fluid mass sources and point forces in linear elastic diffusive solids. Mech Mater 5:383–393CrossRef
Zurück zum Zitat Rudnicki JW, Chen CH (1988) Stabilization of rapid frictional slip on a weakening fault by dilatant hardening. J Geophys Res 93:4745–4757CrossRef Rudnicki JW, Chen CH (1988) Stabilization of rapid frictional slip on a weakening fault by dilatant hardening. J Geophys Res 93:4745–4757CrossRef
Zurück zum Zitat Saffer DM, Tobin HJ (2011) Hydrogeology and mechanics of subduction zone forearcs: Fluid flow and pore pressure. Annu Rev Earth Planet Sci 39:157–186CrossRef Saffer DM, Tobin HJ (2011) Hydrogeology and mechanics of subduction zone forearcs: Fluid flow and pore pressure. Annu Rev Earth Planet Sci 39:157–186CrossRef
Zurück zum Zitat Scholz CH, Sykes LR, Aggarwal YP (1973) Earthquake prediction: a physical basis. Science 181:803–809CrossRef Scholz CH, Sykes LR, Aggarwal YP (1973) Earthquake prediction: a physical basis. Science 181:803–809CrossRef
Zurück zum Zitat Scholz CH (2002) The mechanics of earthquakes and faulting, 2nd edn. Cambridge Univ. Press, CambridgeCrossRef Scholz CH (2002) The mechanics of earthquakes and faulting, 2nd edn. Cambridge Univ. Press, CambridgeCrossRef
Zurück zum Zitat Segall P, Rice JR (1995) Dilatancy, compaction, and slip instability of a fluid-infiltrated fault. J Geophys Res 100:22155–22171 Segall P, Rice JR (1995) Dilatancy, compaction, and slip instability of a fluid-infiltrated fault. J Geophys Res 100:22155–22171
Zurück zum Zitat Shapiro SA, Huenges E, Borm G (1997) Estimating the crust permeability from fluid-injection-induced seismic emission at the KTB site. Geophys J Int 131:F15–F18CrossRef Shapiro SA, Huenges E, Borm G (1997) Estimating the crust permeability from fluid-injection-induced seismic emission at the KTB site. Geophys J Int 131:F15–F18CrossRef
Zurück zum Zitat Sulem J, Famin V (2009) Thermal decomposition of carbonates in fault zones: Slip-weakening and temperature limiting effects. J Geophys Res 114:B03309. doi:10.1029/2008JB006004 Sulem J, Famin V (2009) Thermal decomposition of carbonates in fault zones: Slip-weakening and temperature limiting effects. J Geophys Res 114:B03309. doi:10.​1029/​2008JB006004
Zurück zum Zitat Sulem J, Stefanou I, Veveakis E (2011) Stability analysis of undrained adiabatic shearing of a rock layer with Cosserat microstructure. Granular Matter 13:261–268CrossRef Sulem J, Stefanou I, Veveakis E (2011) Stability analysis of undrained adiabatic shearing of a rock layer with Cosserat microstructure. Granular Matter 13:261–268CrossRef
Zurück zum Zitat Sulem J, Stefanou I (2016) Thermal and chemical effects in shear and compaction bands. Geomech Energy Environ 6:4–21CrossRef Sulem J, Stefanou I (2016) Thermal and chemical effects in shear and compaction bands. Geomech Energy Environ 6:4–21CrossRef
Zurück zum Zitat Suzuki T, Yamashita T (2007) Understanding of slip-weakening and—strengthening in a single framework of modeling and its seismological implications. Geophys Res Lett 34:L13303. doi:10.1029/2007GL030260 CrossRef Suzuki T, Yamashita T (2007) Understanding of slip-weakening and—strengthening in a single framework of modeling and its seismological implications. Geophys Res Lett 34:L13303. doi:10.​1029/​2007GL030260 CrossRef
Zurück zum Zitat Suzuki T, Yamashita T (2009) Dynamic modeling of slow earthquakes based on thermoporoelastic effects and inelastic generation of pores. J Geophys Res 114:B00A04. doi:10.1029/2008JB006042 Suzuki T, Yamashita T (2009) Dynamic modeling of slow earthquakes based on thermoporoelastic effects and inelastic generation of pores. J Geophys Res 114:B00A04. doi:10.​1029/​2008JB006042
Zurück zum Zitat Suzuki T, Yamashita T (2010) Nondimensional control parameters governing the behavior of one-dimensional fault slip: Effects of shear heating, inelastic pore creation, and fluid flow. J Geophys Res 115:B02303. doi:10.1029/2009JB006557 CrossRef Suzuki T, Yamashita T (2010) Nondimensional control parameters governing the behavior of one-dimensional fault slip: Effects of shear heating, inelastic pore creation, and fluid flow. J Geophys Res 115:B02303. doi:10.​1029/​2009JB006557 CrossRef
Zurück zum Zitat Suzuki T, Yamashita T (2014) Effects of shear heating, slip-Induced dilatancy and fluid flow on diversity of 1-D dynamic earthquake slip. J Geophys Res 119:2100–2120. doi:10.1002/2013JB010871 CrossRef Suzuki T, Yamashita T (2014) Effects of shear heating, slip-Induced dilatancy and fluid flow on diversity of 1-D dynamic earthquake slip. J Geophys Res 119:2100–2120. doi:10.​1002/​2013JB010871 CrossRef
Zurück zum Zitat Terzaghi K (1923) Die berechnung der burchlassigkeitsziffer des tones aus dem verlauf der hydrodynamischen spannungsercheinungen. Sitzber Akad Wiss Wien Abt IIa 132:125–138 Terzaghi K (1923) Die berechnung der burchlassigkeitsziffer des tones aus dem verlauf der hydrodynamischen spannungsercheinungen. Sitzber Akad Wiss Wien Abt IIa 132:125–138
Zurück zum Zitat Teufel LW (1981) Pore volume changes during frictional sliding of simulated faults. In Carter NL, Friedman M, Logan JM, Stearns DW (eds) Mechanical Behavior of Crustal Rocks: The Handin Volume. Geophys Monogr Ser, vol 24. American Geophys Union, Washington DC, pp 135–145 Teufel LW (1981) Pore volume changes during frictional sliding of simulated faults. In Carter NL, Friedman M, Logan JM, Stearns DW (eds) Mechanical Behavior of Crustal Rocks: The Handin Volume. Geophys Monogr Ser, vol 24. American Geophys Union, Washington DC, pp 135–145
Zurück zum Zitat Urata U, Kuge K, Kase Y (2013) Suppression of slip and rupture velocity increased by thermal pressurization: effect of dilatancy. J Geophys Res 118:5827–5837. doi:10.1002/2013JB010640 CrossRef Urata U, Kuge K, Kase Y (2013) Suppression of slip and rupture velocity increased by thermal pressurization: effect of dilatancy. J Geophys Res 118:5827–5837. doi:10.​1002/​2013JB010640 CrossRef
Zurück zum Zitat van der Elst NJ, Brodsky EE, Le Bas PY, Johnson PA (2012) Auto-acoustic compaction in steady shear flows: experimental evidence for suppression of shear dilatancy by internal acoustic vibration. J Geophys Res 117:B09314. doi:10.1029/2011JB008897 van der Elst NJ, Brodsky EE, Le Bas PY, Johnson PA (2012) Auto-acoustic compaction in steady shear flows: experimental evidence for suppression of shear dilatancy by internal acoustic vibration. J Geophys Res 117:B09314. doi:10.​1029/​2011JB008897
Zurück zum Zitat Verruijt A (1971) Displacement functions in the theory of consolidation or in thermoelasticity. J Appl Math Phys 22:891–898CrossRef Verruijt A (1971) Displacement functions in the theory of consolidation or in thermoelasticity. J Appl Math Phys 22:891–898CrossRef
Zurück zum Zitat Wang HF (2000) Theory of linear poroelasticity. Princeton University Press, Princeton Wang HF (2000) Theory of linear poroelasticity. Princeton University Press, Princeton
Zurück zum Zitat Yamashita T (1999) Pore creation due to fault slip in a fluid-permeated fault zone and its effect on seismicity: generation mechanism of earthquake swarm. Pure appl Geophys 155:625–647CrossRef Yamashita T (1999) Pore creation due to fault slip in a fluid-permeated fault zone and its effect on seismicity: generation mechanism of earthquake swarm. Pure appl Geophys 155:625–647CrossRef
Zurück zum Zitat Yamashita T (2000) Generation of microcracks by dynamic shear rupture and its effects on rupture growth and elastic wave radiation. Geophys J Int 143:395–406CrossRef Yamashita T (2000) Generation of microcracks by dynamic shear rupture and its effects on rupture growth and elastic wave radiation. Geophys J Int 143:395–406CrossRef
Zurück zum Zitat Zhou Y, Rajapaske RKND, Graham J (1998) A coupled thermoporoelastic model with thermo-osmosis and thermal filtration. Int J Solids Struct 35:4659–4683CrossRef Zhou Y, Rajapaske RKND, Graham J (1998) A coupled thermoporoelastic model with thermo-osmosis and thermal filtration. Int J Solids Struct 35:4659–4683CrossRef
Metadaten
Titel
Basic Equations for Linear Thermoporoelasticity
verfasst von
Teruo Yamashita
Akito Tsutsumi
Copyright-Jahr
2018
Verlag
Springer Japan
DOI
https://doi.org/10.1007/978-4-431-56562-8_4