Skip to main content

2001 | OriginalPaper | Buchkapitel

Basic Properties of Harmonic, Subharmonic, and Superharmonic Functions

verfasst von : Joseph L. Doob

Erschienen in: Classical Potential Theory and Its Probabilistic Counterpart

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Let B = B(ξ0, δ) and if ξ ∈ B denote by ξ′ the image of ξ under inversion in ∂B. That is, ξx′ is on the ray from ξ0 through ξ, and |ξ – ξ0| |ξx′ – ξ0| = δ2. To simplify the notation take ξ0 = O. Then G B , as defined by 1.1$$ {G_B}\left\{ \begin{gathered} \log \frac{{|\zeta ' - \eta ||\zeta |}}{{\delta |\zeta - \eta |}} \left( { = \log \frac{\delta }{{|\eta |}} if \zeta = 0} \right) \hfill \\ for N = 2 \hfill \\ |\zeta - \eta {|^{{2 - N}}} - {\left( {\frac{\delta }{{|\zeta |}}} \right)^{{N - 2}}} \left( { = |\eta {|^{{2 - N}}} if \zeta = 0} \right) \hfill \\ for N > 2 \hfill \\ \end{gathered} \right. $$ with the understanding that G B (ξ, ξ)= +∞, satisfies items (ix′)–(ivx′) of Section 1.8, so that harmonic measure for B is given by 1.2$$ {\mu_B}(\zeta, d\eta ) = - \frac{1}{{\pi_N^{'}}}{D_{{{n_{\eta }}}}}{G_B}(\zeta, \eta ){l_{{N - 1}}}(d\eta ) = \frac{{K(\eta, \zeta )}}{{{\pi_N}{\delta^{{N - 1}}}}}{l_{{N - 1}}}(d\eta ) $$ where l N–1 here refers to surface area on ∂B and 1.3$$ K(\eta, ) = {\delta^{{N - 2}}}\frac{{{\delta^{{N - 2}}} - |\zeta {|^2}}}{{|\eta - \zeta {|^N}}} $$

Metadaten
Titel
Basic Properties of Harmonic, Subharmonic, and Superharmonic Functions
verfasst von
Joseph L. Doob
Copyright-Jahr
2001
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-56573-1_2