Skip to main content

2018 | OriginalPaper | Buchkapitel

5. Basics and Applications of Thermal Engineering

verfasst von : T. K. Gogoi, U. S. Dixit

Erschienen in: Introduction to Mechanical Engineering

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter presents the basics of three major topics of thermal engineering, viz. fluid mechanics, heat transfer, and thermodynamics. The three main parts of fluid mechanics, viz. fluid statics, kinematics, and dynamics, are summarized. The three modes of heat transfer, conduction, convection, and radiation, are briefly explained with examples. Finally, the basics of thermodynamics are presented in detail. The important thermodynamic properties and laws of thermodynamics are introduced. Energy and exergy balances for thermodynamic systems are discussed. Some application areas of thermal engineering are highlighted.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Glossar
Aerodynamics
Study of flow of gases.
Blackbody
A hypothetical body that emits maximum radiation uniformly in all directions at a given temperature and wavelength. A blackbody also absorbs radiation of all wavelengths falling on its surface from all directions.
Closed (non-flow) system
A thermodynamic system that allows only energy interaction through the system boundary but no mass can enter or leave the system.
Cogeneration
Combined generation of power and heating (or cooling) from the same thermal system.
Compressible flow
Flow in which fluid density changes in the flow field.
Conduction
Heat transfer by molecular motion.
Convection
Heat transfer due to bulk motion of fluid over a solid surface.
Cyclic heat engine
A work-producing device that delivers net work operating in a thermodynamic cycle exchanging heat with a source and a sink.
Cyclic heat pump
A work-consuming device that produces heating effect operating in a thermodynamic cycle exchanging heat with a source and a sink.
Cyclic Refrigerator
A work-consuming device that produces cooling–heating effect operating in a thermodynamic cycle exchanging heat with a source and a sink.
Emissivity
The ratio of radiation energy emitted by a real surface at a given temperature to the radiation emitted by a blackbody at the same temperature.
Energy interaction
Energy exchange between system and its surroundings in the form of heat and work.
Energy analysis
Analysis based on first law of thermodynamic that applies energy balance equation in determining energy losses of system components.
Enthalpy
A thermodynamic property associated with an open (or flow) system defined as \(h = u + Pv\) where h is the specific enthalpy, u is the specific internal energy, P is the pressure, and v is the specific volume.
Entropy
A thermodynamic property that measures the degree of energy degradation or irreversibility in a process. It also indicates disorderliness and randomness of the system.
Equilibrium state
The state of a system with fixed property values not undergoing any change due to system–surrounding interaction.
Exergy
Maximum useful work obtained from a system when it comes in equilibrium with the surroundings.
Exergy analysis
Analysis based on second law of thermodynamic that applies exergy balance equation in determining exergy destruction (irreversibility) of system components.
Exergoeconomic analysis
Thermodynamic analysis based on exergy costing theory.
External flow
Fluid flow over an unbounded surface such as a plate or a pipe.
First law of thermodynamics
The law of energy conservation applied to any system undergoing a change of state or a cycle.
Flow field
A region where velocities are specified at each and every location at all times.
Fluid
It is the state of matter which does not have a fixed shape and cannot remain static under the application of a shear force.
Fluid dynamics
The branch of fluid mechanics that studies fluid motion along with the governing forces (inertia force, pressure force, viscous force, etc.).
Fluid Kinematics
The branch of fluid mechanics that studies fluid motion without considering the nature of forces.
Fluid statics
The branch of fluid mechanics that studies fluids at rest.
Governing equations of motion
Conservation equations of mass and momentum. The mass conservation equation is called continuity equation, and the momentum conservation equation is called momentum equation.
Hydrodynamics
Study of flow of liquids.
Incompressible flow
Flow of constant density fluids (all liquid flows).
Internal energy
Total energy (sum of molecular internal energy, potential energy and kinetic energy) of a system.
Internal flow
Fluid flow bounded inside a solid surface such as a pipe or a duct.
Irrotational flow
Flow in which rotational components in the flow field are zero.
Isolated system
A thermodynamic system in total isolation from its surroundings with no mass and energy transfer.
Laminar flow
Fluid flow in which fluid particles move in parallel layers smoothly over one another.
Navier–Stokes Equations
Momentum equations for incompressible, isotropic, Newtonian fluid of constant viscosity.
Non-uniform flow
Flow in which velocity and other hydrodynamic parameters are different at different locations at a given instant of time.
Open (flow) system
A thermodynamic system that allows both mass and energy transfer across the system boundary.
Radiation
Heat transfer due to propagation of electromagnetic waves through vacuum.
Reversible process
An ideal process in which all the states passed through by a system are equilibrium states.
Reynolds Number
Ratio of inertia to viscous force defined mathematically as \(\text{Re} = \frac{{VL_{\text{c}} }}{\nu }\), where \(V\) is the average flow velocity, \(L_{\text{c}}\) is the characteristic length (e.g., diameter of a circular pipe, hydraulic diameter of non-circular ducts), and \(\nu\) is the kinematic viscosity of the fluid. Reynolds number is a non-dimensional parameter that is used to identify laminar and turbulent flow.
Rotational flow
Fluid flow with rotation of fluid particles about their own axis.
Second law of thermodynamics
The law that indicates the direction of energy transfer. If the first law of thermodynamics is called the law of energy conservation, then second law can be termed as the law of energy degradation.
Steady flow
Flow in which the velocity and the fluid properties do not vary with time in the flow field.
Stefan–Boltzmann law
The law that governs radiation heat transfer rate emitted by a blackbody at a given temperature.
Thermal energy reservoir
A body of infinite heat capacity whose temperature does not change upon receiving and rejecting heat.
Thermodynamic cycle
A series of processes undergone by a system in which the initial and final states are identical.
Thermodynamic process
A change of state undergone by a system in which the properties of the system change.
Thermoeconomic analysis
Combined thermodynamic performance and cost (capital, operating and maintenance) analysis.
Trigeneration
Generation of power heating and cooling from the same thermal system.
Turbulent flow
Irregular and chaotic flow with random fluctuations of velocity and fluid properties with time and space coordinates.
Uniform flow
Flow in which velocity and other hydrodynamic parameters assume constant values at all locations at a given time.
Unsteady flow
Flow in which the velocity and the fluid properties change with time in the flow field.
Work transfer
All modes of energy transfer except heat transfer governed by temperature difference.
Literatur
1.
Zurück zum Zitat White, F. M. (2009). Fluid mechanics (6th ed.). New Delhi: Tata McGraw Hill. White, F. M. (2009). Fluid mechanics (6th ed.). New Delhi: Tata McGraw Hill.
2.
Zurück zum Zitat Som, S. K., & Biswas, G. (2008). Introduction to fluid mechanics and fluid machines (2nd ed.). New Delhi: Tata McGraw Hill. Som, S. K., & Biswas, G. (2008). Introduction to fluid mechanics and fluid machines (2nd ed.). New Delhi: Tata McGraw Hill.
3.
Zurück zum Zitat Cengel, Y. A., & Ghazar, A. J. (2014). Heat and mass transfer: Fundamentals and applications (5th ed.). Boston, MA: Tata McGraw Hill. Cengel, Y. A., & Ghazar, A. J. (2014). Heat and mass transfer: Fundamentals and applications (5th ed.). Boston, MA: Tata McGraw Hill.
4.
Zurück zum Zitat Jang, J. Y., & Chen, L. K. (2004). Numerical analysis of heat transfer and fluid flow in a three-dimensional wavy-fin and tube heat exchanger. International Journal of Heat and Mass Transfer, 47, 4327–4338.CrossRef Jang, J. Y., & Chen, L. K. (2004). Numerical analysis of heat transfer and fluid flow in a three-dimensional wavy-fin and tube heat exchanger. International Journal of Heat and Mass Transfer, 47, 4327–4338.CrossRef
5.
Zurück zum Zitat Lee, P. S., & Garimella, S. V. (2006). Thermally developing flow and heat transfer in rectangular microchannels of different aspect ratios. International Journal of Heat and Mass Transfer, 49, 3060–3067.CrossRef Lee, P. S., & Garimella, S. V. (2006). Thermally developing flow and heat transfer in rectangular microchannels of different aspect ratios. International Journal of Heat and Mass Transfer, 49, 3060–3067.CrossRef
6.
Zurück zum Zitat Karmare, S. V., & Tikekar, A. N. (2010). Analysis of fluid flow and heat transfer in a rib grit roughened surface solar air heater using CFD. Solar Energy, 84, 409–417.CrossRef Karmare, S. V., & Tikekar, A. N. (2010). Analysis of fluid flow and heat transfer in a rib grit roughened surface solar air heater using CFD. Solar Energy, 84, 409–417.CrossRef
7.
Zurück zum Zitat Rashidi, M. M., Rastegari, M. T., Sadi, M., & Bég, O. A. (2012). A study of non-newtonian flow and heat transfer over a non-isothermal wedge using the homotopy analysis method. Chemical Engineering Communications, 199(2), 231–256.CrossRef Rashidi, M. M., Rastegari, M. T., Sadi, M., & Bég, O. A. (2012). A study of non-newtonian flow and heat transfer over a non-isothermal wedge using the homotopy analysis method. Chemical Engineering Communications, 199(2), 231–256.CrossRef
8.
Zurück zum Zitat Cengel, Y. A., & Boles, M. A. (2006). Thermodynamics: An engineering approach (5th ed.). Boston, MA: Tata McGraw Hill. Cengel, Y. A., & Boles, M. A. (2006). Thermodynamics: An engineering approach (5th ed.). Boston, MA: Tata McGraw Hill.
9.
Zurück zum Zitat Dixit, U. S., Hazarika, M., & Davim, J. P. (2017). A brief history of mechanical engineering. Switzerland: Springer.CrossRef Dixit, U. S., Hazarika, M., & Davim, J. P. (2017). A brief history of mechanical engineering. Switzerland: Springer.CrossRef
10.
Zurück zum Zitat Nag, P. K. (2010). Basic and applied thermodynamics (2nd ed.). New Delhi: Tata McGraw Hill. Nag, P. K. (2010). Basic and applied thermodynamics (2nd ed.). New Delhi: Tata McGraw Hill.
11.
Zurück zum Zitat Sengupta, S., Datta, A., & Duttagupta, S. (2007). Exergy analysis of a coal-based 210 MW thermal power plant. International Journal of Energy Research, 3, 14–28.CrossRef Sengupta, S., Datta, A., & Duttagupta, S. (2007). Exergy analysis of a coal-based 210 MW thermal power plant. International Journal of Energy Research, 3, 14–28.CrossRef
12.
Zurück zum Zitat Ganapathy, T., Alagumurthi, N., Gakkhar, R. P., & Murugesan, K. (2009). Exergy analysis of operating lignite fired thermal power plant. Journal of Engineering Science and Technology Review, 2, 123–130. Ganapathy, T., Alagumurthi, N., Gakkhar, R. P., & Murugesan, K. (2009). Exergy analysis of operating lignite fired thermal power plant. Journal of Engineering Science and Technology Review, 2, 123–130.
13.
Zurück zum Zitat Woudstra, N., Woudstra, T., Pirone, A., & van der Stelt, T. (2010). Thermodynamic evaluation of combined cycle plants. Energy Conversion and Management, 51, 1099–1110.CrossRef Woudstra, N., Woudstra, T., Pirone, A., & van der Stelt, T. (2010). Thermodynamic evaluation of combined cycle plants. Energy Conversion and Management, 51, 1099–1110.CrossRef
14.
Zurück zum Zitat Shi, X., Agnew, B., & Che, D. (2011). Analysis of a combined cycle power plant integrated with a liquid natural gas gasification and power generation system. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 225, 1–11. Shi, X., Agnew, B., & Che, D. (2011). Analysis of a combined cycle power plant integrated with a liquid natural gas gasification and power generation system. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 225, 1–11.
15.
Zurück zum Zitat Sarmah, P., & Gogoi, T. K. (2017). Performance comparison of SOFC integrated combined power systems with three different bottoming steam turbine cycles. Energy Conversion and Management, 132, 91–101.CrossRef Sarmah, P., & Gogoi, T. K. (2017). Performance comparison of SOFC integrated combined power systems with three different bottoming steam turbine cycles. Energy Conversion and Management, 132, 91–101.CrossRef
16.
Zurück zum Zitat Kanniche, M., & Bouallou, C. (2007). CO2 capture study in advanced integrated gasification combined cycle. Applied Thermal Engineering, 27, 2693–2702.CrossRef Kanniche, M., & Bouallou, C. (2007). CO2 capture study in advanced integrated gasification combined cycle. Applied Thermal Engineering, 27, 2693–2702.CrossRef
17.
Zurück zum Zitat Romano, M. C., Campanari, S., Spallina, V., & Lozza, G. (2011). Thermodynamic analysis and optimization of IT-SOFC-based integrated coal gasification fuel cell power plants. Journal of Fuel Cell Science and Technology, 8(041002), 1–11. Romano, M. C., Campanari, S., Spallina, V., & Lozza, G. (2011). Thermodynamic analysis and optimization of IT-SOFC-based integrated coal gasification fuel cell power plants. Journal of Fuel Cell Science and Technology, 8(041002), 1–11.
18.
Zurück zum Zitat Hycienth, I., Onovwiona, V., Ugursal, I., & Fung, A. S. (2007). Modeling of internal combustion engine based cogeneration systems for residential applications. Applied Thermal Engineering, 27, 848–861.CrossRef Hycienth, I., Onovwiona, V., Ugursal, I., & Fung, A. S. (2007). Modeling of internal combustion engine based cogeneration systems for residential applications. Applied Thermal Engineering, 27, 848–861.CrossRef
19.
Zurück zum Zitat Talukdar, K., & Gogoi, T. K. (2016). Exergy analysis of a combined vapor power cycle and boiler flue gas driven double effect water-LiBr absorption refrigeration system. Energy Conversion and Management, 108, 468–477.CrossRef Talukdar, K., & Gogoi, T. K. (2016). Exergy analysis of a combined vapor power cycle and boiler flue gas driven double effect water-LiBr absorption refrigeration system. Energy Conversion and Management, 108, 468–477.CrossRef
20.
Zurück zum Zitat Khaliq, A. (2009). Exergy analysis of gas turbine trigeneration system for combined production of power heat and refrigeration. International Journal of Refrigeration, 32, 534–545.CrossRef Khaliq, A. (2009). Exergy analysis of gas turbine trigeneration system for combined production of power heat and refrigeration. International Journal of Refrigeration, 32, 534–545.CrossRef
21.
Zurück zum Zitat Al-Sulaiman, F. A., Dincer, I., & Hamdullahpur, F. (2011). Exergy modeling of a new solar driven trigeneration system. Solar Energy, 85, 2228–2243.CrossRef Al-Sulaiman, F. A., Dincer, I., & Hamdullahpur, F. (2011). Exergy modeling of a new solar driven trigeneration system. Solar Energy, 85, 2228–2243.CrossRef
22.
Zurück zum Zitat Khalid, F., Dincer, I., & Rosen, M. A. (2015). Energy and exergy analyses of a solar-biomass integrated cycle for multigeneration. Solar Energy, 112, 290–299.CrossRef Khalid, F., Dincer, I., & Rosen, M. A. (2015). Energy and exergy analyses of a solar-biomass integrated cycle for multigeneration. Solar Energy, 112, 290–299.CrossRef
23.
Zurück zum Zitat Al-Ali, M., & Dincer, I. (2014). Energetic and exergetic studies of a multigenerational solar-geothermal system. Applied Thermal Engineering, 71, 16–23.CrossRef Al-Ali, M., & Dincer, I. (2014). Energetic and exergetic studies of a multigenerational solar-geothermal system. Applied Thermal Engineering, 71, 16–23.CrossRef
24.
Zurück zum Zitat Hawlader, M. N. A., Chou, S. K., & Ullah, M. Z. (2001). The performance of a solar assisted heat pump water heating system. Applied Thermal Engineering, 21, 1049–1065.CrossRef Hawlader, M. N. A., Chou, S. K., & Ullah, M. Z. (2001). The performance of a solar assisted heat pump water heating system. Applied Thermal Engineering, 21, 1049–1065.CrossRef
25.
Zurück zum Zitat Ayompe, L. M., & Duffy, A. (2013). Thermal performance analysis of a solar water heating system with heat pipe evacuated tube collector using data from a field trial. Solar Energy, 90, 17–28.CrossRef Ayompe, L. M., & Duffy, A. (2013). Thermal performance analysis of a solar water heating system with heat pipe evacuated tube collector using data from a field trial. Solar Energy, 90, 17–28.CrossRef
26.
Zurück zum Zitat Jain, V., Kachhwaha, S. S., & Sachdeva, G. (2013). Thermodynamic performance analysis of a vapor compression–absorption cascaded refrigeration system. Energy Conversion and Management, 75, 685–700.CrossRef Jain, V., Kachhwaha, S. S., & Sachdeva, G. (2013). Thermodynamic performance analysis of a vapor compression–absorption cascaded refrigeration system. Energy Conversion and Management, 75, 685–700.CrossRef
27.
Zurück zum Zitat Llopis, R., Sánchez, D., Sanz-Kock, C. S., Cabello, R., & Torrella, E. (2015). Energy and environmental comparison of two-stage solutions for commercial refrigeration at low temperature: Fluids and systems. Applied Energy, 138, 133–142.CrossRef Llopis, R., Sánchez, D., Sanz-Kock, C. S., Cabello, R., & Torrella, E. (2015). Energy and environmental comparison of two-stage solutions for commercial refrigeration at low temperature: Fluids and systems. Applied Energy, 138, 133–142.CrossRef
28.
Zurück zum Zitat Davirana, S., Kasaeiana, A., Golzari, S., Mahian, O., Nasirivatan, S., & Wongwises, S. (2017). A comparative study on the performance of HFO-1234yf and HFC-134a as an alternative in automotive air conditioning systems. Applied Thermal Engineering, 110, 1091–1100.CrossRef Davirana, S., Kasaeiana, A., Golzari, S., Mahian, O., Nasirivatan, S., & Wongwises, S. (2017). A comparative study on the performance of HFO-1234yf and HFC-134a as an alternative in automotive air conditioning systems. Applied Thermal Engineering, 110, 1091–1100.CrossRef
29.
Zurück zum Zitat Rakopoulos, C. D., & Giakoumis, E. G. (2006). Second-law analyses applied to internal combustion engines operation. Progress in Energy and Combustion Science, 32, 2–47.CrossRef Rakopoulos, C. D., & Giakoumis, E. G. (2006). Second-law analyses applied to internal combustion engines operation. Progress in Energy and Combustion Science, 32, 2–47.CrossRef
30.
Zurück zum Zitat Gogoi, T. K. (2013). Exergy analysis of a diesel engine operated with koroch seed oil methyl ester and its diesel fuel blends. International Journal of Exergy, 12, 183–204.MathSciNetCrossRef Gogoi, T. K. (2013). Exergy analysis of a diesel engine operated with koroch seed oil methyl ester and its diesel fuel blends. International Journal of Exergy, 12, 183–204.MathSciNetCrossRef
31.
Zurück zum Zitat Park, J., Li, P., & Bae, J. (2012). Analysis of chemical, electrochemical reactions and thermo-fluid flow in methane-feed internal reforming SOFCs: Part I—modeling and effect of gas concentrations. International Journal of Hydrogen Energy, 37, 8512–8531.CrossRef Park, J., Li, P., & Bae, J. (2012). Analysis of chemical, electrochemical reactions and thermo-fluid flow in methane-feed internal reforming SOFCs: Part I—modeling and effect of gas concentrations. International Journal of Hydrogen Energy, 37, 8512–8531.CrossRef
32.
Zurück zum Zitat Silveira, J. L., Leal, E. M., & Ragonha, L. F., Jr. (2001). Analysis of a molten carbonate fuel cell: Cogeneration to produce electricity and cold water. Energy, 26, 891–904.CrossRef Silveira, J. L., Leal, E. M., & Ragonha, L. F., Jr. (2001). Analysis of a molten carbonate fuel cell: Cogeneration to produce electricity and cold water. Energy, 26, 891–904.CrossRef
33.
Zurück zum Zitat Yagoub, W., Doherty, P., & Riffat, S. B. (2006). Solar energy-gas driven micro-CHP system for an office building. Applied Thermal Engineering, 26, 1604–1610.CrossRef Yagoub, W., Doherty, P., & Riffat, S. B. (2006). Solar energy-gas driven micro-CHP system for an office building. Applied Thermal Engineering, 26, 1604–1610.CrossRef
34.
Zurück zum Zitat Siqueira, A. M. O., Gomes, P. E. N., Torrezani, L., Lucas, E. O., & Pereira, G. M. C. (2014). Heat transfer analysis and modeling of a parabolic trough solar collector: An analysis. Energy Procedia, 57, 401–410.CrossRef Siqueira, A. M. O., Gomes, P. E. N., Torrezani, L., Lucas, E. O., & Pereira, G. M. C. (2014). Heat transfer analysis and modeling of a parabolic trough solar collector: An analysis. Energy Procedia, 57, 401–410.CrossRef
35.
Zurück zum Zitat Coskun, C., Oktay, Z., & Dincer, I. (2011). Performance evaluations of a geothermal power plant. Applied Thermal Engineering, 31(2011), 4074–4082.CrossRef Coskun, C., Oktay, Z., & Dincer, I. (2011). Performance evaluations of a geothermal power plant. Applied Thermal Engineering, 31(2011), 4074–4082.CrossRef
36.
Zurück zum Zitat Tuo, H. (2013). Energy and exergy-based working fluid selection for organic Rankine cycle recovering waste heat from high temperature solid oxide fuel cell and gas turbine hybrid systems. International Journal of Energy Research, 37, 1831–1841.CrossRef Tuo, H. (2013). Energy and exergy-based working fluid selection for organic Rankine cycle recovering waste heat from high temperature solid oxide fuel cell and gas turbine hybrid systems. International Journal of Energy Research, 37, 1831–1841.CrossRef
37.
Zurück zum Zitat Sahoo, P. K. (2008). Exergoeconomic analysis and optimization of a cogeneration system using evolutionary programming. Applied Thermal Engineering, 28, 1580–1588.CrossRef Sahoo, P. K. (2008). Exergoeconomic analysis and optimization of a cogeneration system using evolutionary programming. Applied Thermal Engineering, 28, 1580–1588.CrossRef
38.
Zurück zum Zitat Khaljani, M., Saray, R. K., & Bahlouli, K. (2015). Comprehensive analysis of energy, exergy and exergo-economic of cogeneration of heat and power in a combined gas turbine and organic Rankine cycle. Energy Conversion and Management, 97, 154–165.CrossRef Khaljani, M., Saray, R. K., & Bahlouli, K. (2015). Comprehensive analysis of energy, exergy and exergo-economic of cogeneration of heat and power in a combined gas turbine and organic Rankine cycle. Energy Conversion and Management, 97, 154–165.CrossRef
39.
Zurück zum Zitat Valdes, M., Duran, M. D., & Rovira, A. (2003). Thermoeconomic optimization of combined cycle gas turbine power plants using genetic algorithms. Applied Thermal Engineering, 23, 2169–2182.CrossRef Valdes, M., Duran, M. D., & Rovira, A. (2003). Thermoeconomic optimization of combined cycle gas turbine power plants using genetic algorithms. Applied Thermal Engineering, 23, 2169–2182.CrossRef
40.
Zurück zum Zitat Quoilin, S., Declaye, S., Tchanche, B. F., & Lemort, V. (2011). Thermo-economic optimization of waste heat recovery Organic Rankine Cycles. Applied Thermal Engineering, 31, 2885–2893.CrossRef Quoilin, S., Declaye, S., Tchanche, B. F., & Lemort, V. (2011). Thermo-economic optimization of waste heat recovery Organic Rankine Cycles. Applied Thermal Engineering, 31, 2885–2893.CrossRef
41.
Zurück zum Zitat Modi, A., Kærn, M. R., Andreasen, J. G., & Haglind, F. (2016). Thermoeconomic optimization of a Kalina cycle for a central receiver concentrating solar power plant. Energy Conversion and Management, 115, 276–287.CrossRef Modi, A., Kærn, M. R., Andreasen, J. G., & Haglind, F. (2016). Thermoeconomic optimization of a Kalina cycle for a central receiver concentrating solar power plant. Energy Conversion and Management, 115, 276–287.CrossRef
42.
Zurück zum Zitat Gogoi, T. K. (2016). Estimation of operating parameters of a water–LiBr vapor absorption refrigeration system through inverse analysis. ASME Journal of Energy Resources Technology, 138, 022002.CrossRef Gogoi, T. K. (2016). Estimation of operating parameters of a water–LiBr vapor absorption refrigeration system through inverse analysis. ASME Journal of Energy Resources Technology, 138, 022002.CrossRef
43.
Zurück zum Zitat Sarmah, P., Gogoi, T. K., & Das, R. (2017). Estimation of operating parameters of a SOFC integrated combined power cycle using differential evolution based inverse method. Applied Thermal Engineering, 119, 98–107.CrossRef Sarmah, P., Gogoi, T. K., & Das, R. (2017). Estimation of operating parameters of a SOFC integrated combined power cycle using differential evolution based inverse method. Applied Thermal Engineering, 119, 98–107.CrossRef
44.
Zurück zum Zitat Yadav, V., Singh, A. K., & Dixit, U. S. (2015). Inverse estimation of thermal parameters and friction coefficient during warm flat rolling process. International Journal of Mechanical Sciences, 96–97, 182–198.CrossRef Yadav, V., Singh, A. K., & Dixit, U. S. (2015). Inverse estimation of thermal parameters and friction coefficient during warm flat rolling process. International Journal of Mechanical Sciences, 96–97, 182–198.CrossRef
Metadaten
Titel
Basics and Applications of Thermal Engineering
verfasst von
T. K. Gogoi
U. S. Dixit
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-78488-5_5

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.