Skip to main content

2016 | OriginalPaper | Buchkapitel

9. Batteries for Implants

verfasst von : Vinod Kumar Khanna

Erschienen in: Implantable Medical Electronics

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Batteries for implants must possess characteristics such as safety, reliability, high volumetric energy density, low self-discharge, and long duration of service, which represent essential commitments from manufacturers. The state of discharge must be indicated. In the primary batteries, lithium metal anodes are used. The cathode systems include iodine, manganese oxide, carbon monofluoride, silver vanadium oxide, and crossbreed or hybrid cathodes. This choice of batteries caters to the power levels required by implantable devices, which are spread over a broad range of current values from microampere to ampere levels. Limited battery life is a major impediment to the development of advanced medical implant devices, e.g., when a pacemaker battery runs out, it has to be replaced by surgery. With progressive shrinkage of implant size, more emphasis is laid on building smaller, longer-lasting batteries. Applications involving high power usage rates such as neurostimulators working at milliwatt powers employ secondary rechargeable batteries to achieve longer life span with reduced size.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Tarascon J-M, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367CrossRef Tarascon J-M, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367CrossRef
2.
Zurück zum Zitat Takeuchi ES, Leising RA, Spillman DM et al (2003) Lithium batteries for medical applications. In: Nazri G-A, Pistoia G (eds) Lithium batteries-science and technology. Springer, New York, pp 686–700CrossRef Takeuchi ES, Leising RA, Spillman DM et al (2003) Lithium batteries for medical applications. In: Nazri G-A, Pistoia G (eds) Lithium batteries-science and technology. Springer, New York, pp 686–700CrossRef
3.
Zurück zum Zitat Gutmann F, Hermann AM, Rembaum A (1967) Solid-state electrochemical cells based on charge transfer complexes. J Electrochem Soc 114:323–329CrossRef Gutmann F, Hermann AM, Rembaum A (1967) Solid-state electrochemical cells based on charge transfer complexes. J Electrochem Soc 114:323–329CrossRef
4.
Zurück zum Zitat Holmes CF (2007) The lithium/iodine-polyvinylpyridine battery—35 years of successful clinical use. ECS Trans 6(5):1–7CrossRef Holmes CF (2007) The lithium/iodine-polyvinylpyridine battery—35 years of successful clinical use. ECS Trans 6(5):1–7CrossRef
5.
Zurück zum Zitat Rudolph FW (1990) Anode coating for lithium cell. US Patent 4,934,306 Rudolph FW (1990) Anode coating for lithium cell. US Patent 4,934,306
6.
Zurück zum Zitat Pistoia G (1982) Some restatements on the nature and behavior of MnO2 for Li batteries. J Electrochem Soc 129(9):1861–1865CrossRef Pistoia G (1982) Some restatements on the nature and behavior of MnO2 for Li batteries. J Electrochem Soc 129(9):1861–1865CrossRef
7.
Zurück zum Zitat Ohzuku T, Kitagawa M, Hirai T (1989) Electrochemistry of manganese dioxide in lithium nonaqueous cell I. X‐ray diffractional study on the reduction of electrolytic manganese dioxide. J Electrochem Soc 136(11):3169–3174CrossRef Ohzuku T, Kitagawa M, Hirai T (1989) Electrochemistry of manganese dioxide in lithium nonaqueous cell I. X‐ray diffractional study on the reduction of electrolytic manganese dioxide. J Electrochem Soc 136(11):3169–3174CrossRef
8.
Zurück zum Zitat Nardi JC (1985) Characterization of the Li/MnO2 multistep discharge. J Electrochem Soc 132:1787–1791CrossRef Nardi JC (1985) Characterization of the Li/MnO2 multistep discharge. J Electrochem Soc 132:1787–1791CrossRef
9.
Zurück zum Zitat Usrey ML, Chen X, Pena Hueso JA, et al (2010) Lithium/carbon monofluoride batteries with organosilicon electrolytes. United States Patent US 8,486,569 B2 Usrey ML, Chen X, Pena Hueso JA, et al (2010) Lithium/carbon monofluoride batteries with organosilicon electrolytes. United States Patent US 8,486,569 B2
10.
Zurück zum Zitat Greatbatch W, Holmes CF, Takeuchi ES et al (1996) Lithium/carbon monofluoride (Li/CFx): a new pacemaker battery. Pacing Clin Electrophysiol 19(11):1836–1840CrossRef Greatbatch W, Holmes CF, Takeuchi ES et al (1996) Lithium/carbon monofluoride (Li/CFx): a new pacemaker battery. Pacing Clin Electrophysiol 19(11):1836–1840CrossRef
11.
Zurück zum Zitat Zhang SS, Foster D, Read J (2009) Enhancement of discharge performance of Li/CFx cell by thermal treatment of CFx cathode material. J Power Sources 188:601–605CrossRef Zhang SS, Foster D, Read J (2009) Enhancement of discharge performance of Li/CFx cell by thermal treatment of CFx cathode material. J Power Sources 188:601–605CrossRef
12.
Zurück zum Zitat Zhang SS, Foster D, Read J (2009) Carbothermal treatment for the improved discharge performance of primary Li/CFx battery. J Power Sources 191:648–652CrossRef Zhang SS, Foster D, Read J (2009) Carbothermal treatment for the improved discharge performance of primary Li/CFx battery. J Power Sources 191:648–652CrossRef
13.
Zurück zum Zitat Rangasamy E, Li J, Sahu G et al (2014) Pushing the theoretical limit of Li-CFx batteries: a tale of bifunctional electrolyte. J Am Chem Soc 136(19):6874–6877CrossRef Rangasamy E, Li J, Sahu G et al (2014) Pushing the theoretical limit of Li-CFx batteries: a tale of bifunctional electrolyte. J Am Chem Soc 136(19):6874–6877CrossRef
14.
Zurück zum Zitat Chen K, Merritt DR, Howard WG et al (2006) Hybrid cathode lithium batteries for implantable medical applications. J Power Sources 162:837–840CrossRef Chen K, Merritt DR, Howard WG et al (2006) Hybrid cathode lithium batteries for implantable medical applications. J Power Sources 162:837–840CrossRef
15.
Zurück zum Zitat Takeuchi ES, Thiebolt WC III (1988) The reduction of silver vanadium oxide in lithium/silver vanadium oxide cells. J Electrochem Soc 135(11):2691–2694CrossRef Takeuchi ES, Thiebolt WC III (1988) The reduction of silver vanadium oxide in lithium/silver vanadium oxide cells. J Electrochem Soc 135(11):2691–2694CrossRef
16.
Zurück zum Zitat Leising RA, Thiebolt WC, Takeuchi ES (1994) Solid-state characterization of reduced silver vanadium oxide from the Li/SVO discharge reaction. Inorg Chem 33:5733–5740CrossRef Leising RA, Thiebolt WC, Takeuchi ES (1994) Solid-state characterization of reduced silver vanadium oxide from the Li/SVO discharge reaction. Inorg Chem 33:5733–5740CrossRef
17.
Zurück zum Zitat Cheng F, Chen J (2011) Transition metal vanadium oxides and vanadate materials for lithium batteries. J Mater Chem 21:9841–9848CrossRef Cheng F, Chen J (2011) Transition metal vanadium oxides and vanadate materials for lithium batteries. J Mater Chem 21:9841–9848CrossRef
18.
Zurück zum Zitat Fehrmann G, Frömmel R, Wolf R (1996) Galvanic cell having improved cathode, US Patent 5,587,258. Fehrmann G, Frömmel R, Wolf R (1996) Galvanic cell having improved cathode, US Patent 5,587,258.
19.
Zurück zum Zitat Drews J, Wolf R, Fehrmann G et al (1997) High-rate lithium manganese-dioxide batteries—the double cell concept. J Power Sources 65(1-2):129–132CrossRef Drews J, Wolf R, Fehrmann G et al (1997) High-rate lithium manganese-dioxide batteries—the double cell concept. J Power Sources 65(1-2):129–132CrossRef
20.
Zurück zum Zitat Drews J, Wolf R, Fehrmann G et al (1999) Development of a hybrid battery system for an implantable biomedical device, especially a defibrillator cardioverter (ICD). J Power Sources 80(1-2):107–111CrossRef Drews J, Wolf R, Fehrmann G et al (1999) Development of a hybrid battery system for an implantable biomedical device, especially a defibrillator cardioverter (ICD). J Power Sources 80(1-2):107–111CrossRef
21.
Zurück zum Zitat Root MJ (2010) Lithium–manganese dioxide cells for implantable defibrillator devices—discharge voltage models. J Power Sources 195(15):5089–5093CrossRef Root MJ (2010) Lithium–manganese dioxide cells for implantable defibrillator devices—discharge voltage models. J Power Sources 195(15):5089–5093CrossRef
22.
Zurück zum Zitat Gan H, Rubino RS, Takeuchi ES (2005) Dual-chemistry cathode system for high-rate pulse applications. J Power Sources 146:101–106CrossRef Gan H, Rubino RS, Takeuchi ES (2005) Dual-chemistry cathode system for high-rate pulse applications. J Power Sources 146:101–106CrossRef
23.
Zurück zum Zitat Brodd RJ, Bullock KR, Leising RA et al (2004) Batteries, 1977 to 2002. J Electrochem Soc 151:K1–K11CrossRef Brodd RJ, Bullock KR, Leising RA et al (2004) Batteries, 1977 to 2002. J Electrochem Soc 151:K1–K11CrossRef
24.
Zurück zum Zitat Orman HJ, Wiseman PJ (1984) Cobalt (III) lithium oxide, CoLiO2: structure refinement by powder neutron diffraction. Acta Crystallogr C C40:12–14CrossRef Orman HJ, Wiseman PJ (1984) Cobalt (III) lithium oxide, CoLiO2: structure refinement by powder neutron diffraction. Acta Crystallogr C C40:12–14CrossRef
Metadaten
Titel
Batteries for Implants
verfasst von
Vinod Kumar Khanna
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-25448-7_9

Neuer Inhalt