Skip to main content

2017 | OriginalPaper | Buchkapitel

3. Baxter-On-Wheels (BOW): An Assistive Mobile Manipulator for Mobility Impaired Individuals

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

People with severe mobility impairment such as quadriplegia require help from human assistants to manage activities of daily living. Various assistive robotic devices have been proposed and some are commercially available, but they mostly have limited functionalities. We propose a cost-effective mobile robotic manipulator, BOW, or Baxter -on-Wheels, suitable for operations by mobility impaired but cognitively sound individuals. The BOW combines a human-friendly industrial robot (Baxter by Rethink Robotics) with a commercial electric wheelchair for an integrated and versatile, yet low cost, system. The human user can typically only command a small number of degrees of freedom due to the limitation of motion range or strength. To determine the complete robot motion, we propose a shared-control strategy blending the human command with autonomous redundancy resolution. The resolved velocity algorithm solves an on-line optimization matching the robot motion with the human commanded motion. Additional considerations such as collision prevention, singularity avoidance, satisfaction of joint limits, and exclusion of nonintuitive base motion, are incorporated as part of the optimization objective function or constraints. This constrained optimization problem is strictly convex and may be efficiently solved as a quadratic program. This approach allows multiple modes of operations, selectable by the user, including: end-effector position control, end-effector orientation control, combined position/orientation control, force control, and dual-arm control. We present the experimental results of two illustrative applications on the BOW: end-effector position control for a pick-and-place task and a board cleaning task involving both motion and force control. In both cases, the user only provides a 3-degree-of-freedom command, but can still effectively manipulate the motion and force of the robot end-effector, while the autonomous controller provides intuitive and safe internal motion.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Lu L, Wen JT (2015) Human-directed robot motion / force control for contact tasks in unstructured environments. In: IEEE Conference on automation science and engineering, Sweden, pp 1165–1170. doi:10.1109/CoASE.2015.7294255 Lu L, Wen JT (2015) Human-directed robot motion / force control for contact tasks in unstructured environments. In: IEEE Conference on automation science and engineering, Sweden, pp 1165–1170. doi:10.​1109/​CoASE.​2015.​7294255
2.
Zurück zum Zitat Lu L, Wen JT (2015) Human-robot cooperative control for mobility impaired individuals. In: American control conference, Chicago, July-2015, pp 447–452. doi:10.1109/ACC.2015.7170776 Lu L, Wen JT (2015) Human-robot cooperative control for mobility impaired individuals. In: American control conference, Chicago, July-2015, pp 447–452. doi:10.​1109/​ACC.​2015.​7170776
6.
7.
Zurück zum Zitat Argall BD (2015) Turning assistive machines into assistive robots. In: Proceedings of SPIE - The International Society for Optical Engineering, vol 9370, pp 1–12. doi:10.1117/12.2085352 Argall BD (2015) Turning assistive machines into assistive robots. In: Proceedings of SPIE - The International Society for Optical Engineering, vol 9370, pp 1–12. doi:10.​1117/​12.​2085352
9.
Zurück zum Zitat Haigh KZ, Yanco H (2002) Automation as caregiver: a survey of issues and technologies. In: AAAI-02 Workshop on automation as caregiver: the role of intelligent technology in elder care, pp 39–53 Haigh KZ, Yanco H (2002) Automation as caregiver: a survey of issues and technologies. In: AAAI-02 Workshop on automation as caregiver: the role of intelligent technology in elder care, pp 39–53
10.
Zurück zum Zitat Capille JW Jr (2010) Kinematic and experimental evaluation of commercial wheelchair-mounted robotic arms. Ph.D. Thesis, University of South Florida Capille JW Jr (2010) Kinematic and experimental evaluation of commercial wheelchair-mounted robotic arms. Ph.D. Thesis, University of South Florida
11.
Zurück zum Zitat Hillman M, Hagan K, Hagan S, Jepson J, Orpwood R (2002) The Weston wheelchair mounted assistive robot-the design story. Robotica 20(2):125–132CrossRef Hillman M, Hagan K, Hagan S, Jepson J, Orpwood R (2002) The Weston wheelchair mounted assistive robot-the design story. Robotica 20(2):125–132CrossRef
12.
Zurück zum Zitat Mahoney RM (2001) The raptor wheelchair robot system. Integration of assistive technology in the information age. IOS Press, Netherlands, pp 135–141 Mahoney RM (2001) The raptor wheelchair robot system. Integration of assistive technology in the information age. IOS Press, Netherlands, pp 135–141
14.
Zurück zum Zitat Bien Z, Chung MJ, Chang PH, Kwon DS, Kim DJ, Han JS, Kim JH, Kim DH, Park HS, Kang SH, Lee K, Lim SC (2004) Integration of a rehabilitation robotic system (KARES II) with human-friendly man-machine interaction units. Auton Robots 16(2):165–191. doi:10.1023/B:AURO.0000016864.12513.77 CrossRef Bien Z, Chung MJ, Chang PH, Kwon DS, Kim DJ, Han JS, Kim JH, Kim DH, Park HS, Kang SH, Lee K, Lim SC (2004) Integration of a rehabilitation robotic system (KARES II) with human-friendly man-machine interaction units. Auton Robots 16(2):165–191. doi:10.​1023/​B:​AURO.​0000016864.​12513.​77 CrossRef
15.
Zurück zum Zitat Bien Z, Kim DJ, Chung MJ, Kwon DS, Chang PH (2003) Development of a wheelchair-based rehabilitation robotic system (KARES II) with various human-robot interaction interfaces for the disabled. In: IEEE/ASME international conference on advanced intelligent mechatronics, AIM, vol 2(Aim), pp 902–907. doi:10.1109/AIM.2003.1225462 Bien Z, Kim DJ, Chung MJ, Kwon DS, Chang PH (2003) Development of a wheelchair-based rehabilitation robotic system (KARES II) with various human-robot interaction interfaces for the disabled. In: IEEE/ASME international conference on advanced intelligent mechatronics, AIM, vol 2(Aim), pp 902–907. doi:10.​1109/​AIM.​2003.​1225462
16.
Zurück zum Zitat Chen T, Ciocarlie M, Cousins S, Grice P, Hawkins K, Hsiao K, Kemp C, King CH, Lazewatsky D, Leeper A, Nguyen H, Paepcke A, Pantofaru C, Smart W, Takayama L (2013) Robots for humanity: using assistive robotics to empower people with disabilities. IEEE Robot Autom Mag 20(1):30–39CrossRef Chen T, Ciocarlie M, Cousins S, Grice P, Hawkins K, Hsiao K, Kemp C, King CH, Lazewatsky D, Leeper A, Nguyen H, Paepcke A, Pantofaru C, Smart W, Takayama L (2013) Robots for humanity: using assistive robotics to empower people with disabilities. IEEE Robot Autom Mag 20(1):30–39CrossRef
17.
Zurück zum Zitat Huete AJ, Victores JG, Martinez S, Giminez A, Balaguer C (2012) Personal autonomy rehabilitation in home environments by a portable assistive robot. IEEE Trans Syst Man Cybern Part C: Appl Rev 42(4):561–570. doi:10.1109/TSMCC.2011.2159201 CrossRef Huete AJ, Victores JG, Martinez S, Giminez A, Balaguer C (2012) Personal autonomy rehabilitation in home environments by a portable assistive robot. IEEE Trans Syst Man Cybern Part C: Appl Rev 42(4):561–570. doi:10.​1109/​TSMCC.​2011.​2159201 CrossRef
18.
Zurück zum Zitat Srinivasa S, Berenson D, Cakmak M, Romea AC, Dogar MR (2012) HERB 2.0: lessons learned from developing a mobile manipulator for the home. In: Proceedings of the IEEE, pp 1–19 Srinivasa S, Berenson D, Cakmak M, Romea AC, Dogar MR (2012) HERB 2.0: lessons learned from developing a mobile manipulator for the home. In: Proceedings of the IEEE, pp 1–19
19.
Zurück zum Zitat Srinivasa SS, Ferguson D, Helfrich CJ, Berenson D, Collet A, Diankov R, Gallagher G, Hollinger G, Kuffner J, Weghe MV (2010) HERB: a home exploring robotic butler. Auton Robot 28(1):5–20. doi:10.1007/s10514-009-9160-9 CrossRef Srinivasa SS, Ferguson D, Helfrich CJ, Berenson D, Collet A, Diankov R, Gallagher G, Hollinger G, Kuffner J, Weghe MV (2010) HERB: a home exploring robotic butler. Auton Robot 28(1):5–20. doi:10.​1007/​s10514-009-9160-9 CrossRef
20.
Zurück zum Zitat Jardón A, Gil ÁM, de la Peña AI, Monje C, Balaguer C (2011) Usability assessment of ASIBOT: a portable robot to aid patients with spinal cord injury. Disabil Rehabil Assist Technol 6(4):320–330. doi:10.3109/17483107.2010.528144 CrossRef Jardón A, Gil ÁM, de la Peña AI, Monje C, Balaguer C (2011) Usability assessment of ASIBOT: a portable robot to aid patients with spinal cord injury. Disabil Rehabil Assist Technol 6(4):320–330. doi:10.​3109/​17483107.​2010.​528144 CrossRef
21.
Zurück zum Zitat Anderson RJ, Spong MW (1989) Bilateral control of teleoperators with time delay. IEEE Trans Autom Control 34(5):494–501MathSciNetCrossRef Anderson RJ, Spong MW (1989) Bilateral control of teleoperators with time delay. IEEE Trans Autom Control 34(5):494–501MathSciNetCrossRef
22.
Zurück zum Zitat Lawrence DA (1993) Stability and transparency in bilateral teleoperation. IEEE Trans Robot Autom 9(5) Lawrence DA (1993) Stability and transparency in bilateral teleoperation. IEEE Trans Robot Autom 9(5)
23.
Zurück zum Zitat Vertut J (2013) Teleoperation and robotics: application and technology. Springer, Netherlands Vertut J (2013) Teleoperation and robotics: application and technology. Springer, Netherlands
24.
Zurück zum Zitat Sheridan TB (1992) Telerobotics, automation, and human supervisory control. MIT Press, Cambridge Sheridan TB (1992) Telerobotics, automation, and human supervisory control. MIT Press, Cambridge
25.
Zurück zum Zitat Kruse D, Wen JT, Radke RJ (2015) A sensor-based dual-arm tele-robotic system. IEEE Trans Autom Sci Eng 12(1):4–18CrossRef Kruse D, Wen JT, Radke RJ (2015) A sensor-based dual-arm tele-robotic system. IEEE Trans Autom Sci Eng 12(1):4–18CrossRef
26.
Zurück zum Zitat Stückler J, Behnke S (2011) Following human guidance to cooperatively carry a large object. In: 11th IEEE-RAS international conference on humanoid robots, Slovenia Stückler J, Behnke S (2011) Following human guidance to cooperatively carry a large object. In: 11th IEEE-RAS international conference on humanoid robots, Slovenia
27.
Zurück zum Zitat Kim H, Biggs SJ, Schloerb DW, Carmena JM, Lebedev MA, Nicolelis MAL, Srinivasan MA (2006) Continuous shared control for stabilizing reaching and grasping with brain-machine interfaces. IEEE Trans Biomed Eng 53(6):1164–1173CrossRef Kim H, Biggs SJ, Schloerb DW, Carmena JM, Lebedev MA, Nicolelis MAL, Srinivasan MA (2006) Continuous shared control for stabilizing reaching and grasping with brain-machine interfaces. IEEE Trans Biomed Eng 53(6):1164–1173CrossRef
28.
Zurück zum Zitat Lacey G, MacNamara S (2000) Context-aware shared control of a robot mobility aid for the elderly blind. Int J Robot Res 19(11):1054–1065CrossRef Lacey G, MacNamara S (2000) Context-aware shared control of a robot mobility aid for the elderly blind. Int J Robot Res 19(11):1054–1065CrossRef
29.
Zurück zum Zitat Wang H, Liu XP (2014) Adaptive shared control for a novel mobile assistive robot. IEEE/ASME Trans Mechatron 19(6):1725–1736CrossRef Wang H, Liu XP (2014) Adaptive shared control for a novel mobile assistive robot. IEEE/ASME Trans Mechatron 19(6):1725–1736CrossRef
30.
Zurück zum Zitat Jiang J, Astolfi A (2015) Shared-control for the kinematic model of a rear-wheel drive car. In: Proceedings of 2015 American control conference, Chicago Jiang J, Astolfi A (2015) Shared-control for the kinematic model of a rear-wheel drive car. In: Proceedings of 2015 American control conference, Chicago
31.
Zurück zum Zitat Storms JG, Tilbury DM (2014) Blending of human and obstacle avoidance control for a high speed mobile robot. In: American control conference (ACC), USA Storms JG, Tilbury DM (2014) Blending of human and obstacle avoidance control for a high speed mobile robot. In: American control conference (ACC), USA
32.
Zurück zum Zitat Franchi A, Secchi C, Ryll M, Bulthoff HH, Giordano PR (2012) Shared control: balancing autonomy and human assistance with a group of quadrotor UAVs. IEEE Robot Autom Mag 19(3):57–68CrossRef Franchi A, Secchi C, Ryll M, Bulthoff HH, Giordano PR (2012) Shared control: balancing autonomy and human assistance with a group of quadrotor UAVs. IEEE Robot Autom Mag 19(3):57–68CrossRef
33.
Zurück zum Zitat Nudehi SS, Mukherjee R, Ghodoussi M (2005) A shared-control approach to haptic interface design for minimally invasive telesurgical training. IEEE Trans Control Syst Technol 13(4):588–592CrossRef Nudehi SS, Mukherjee R, Ghodoussi M (2005) A shared-control approach to haptic interface design for minimally invasive telesurgical training. IEEE Trans Control Syst Technol 13(4):588–592CrossRef
34.
Zurück zum Zitat Dragan AD, Srinivasa SS (2013) A policy-blending formalism for shared control. Int J Robot Res 32(7):790–805CrossRef Dragan AD, Srinivasa SS (2013) A policy-blending formalism for shared control. Int J Robot Res 32(7):790–805CrossRef
35.
Zurück zum Zitat Storms JG, Vozar S, Tilbury DM (2014) Predicting human performance during teleoperation. In: ACM/IEEE international conference on human-robot interaction, Bielefeld University, Germany Storms JG, Vozar S, Tilbury DM (2014) Predicting human performance during teleoperation. In: ACM/IEEE international conference on human-robot interaction, Bielefeld University, Germany
36.
Zurück zum Zitat Wang Z, Mülling K, Deisenroth MP, Amor HB, Vogt D, Schölkopf B, Peters J (2013) Probabilistic movement modeling for intention inference in human-robot interaction. Int J Robot Res 32(7):841–858CrossRef Wang Z, Mülling K, Deisenroth MP, Amor HB, Vogt D, Schölkopf B, Peters J (2013) Probabilistic movement modeling for intention inference in human-robot interaction. Int J Robot Res 32(7):841–858CrossRef
37.
Zurück zum Zitat Cai H, Mostofi Y (2015) To ask or not to ask: a foundation for the optimization of human-robot collaborations. In: Proceedings of 2015 American control conference, Chicago Cai H, Mostofi Y (2015) To ask or not to ask: a foundation for the optimization of human-robot collaborations. In: Proceedings of 2015 American control conference, Chicago
38.
Zurück zum Zitat Argall BD, Murphey TD (2014) Computable trust in human instruction. In: AAAI fall symposium series, pp 31–32 Argall BD, Murphey TD (2014) Computable trust in human instruction. In: AAAI fall symposium series, pp 31–32
39.
Zurück zum Zitat Wang X, Shi Z, Zhang F, Wang Y (2015) Mutual trust based scheduling for (semi) autonomous multi-agent systems. In: American control conference (ACC), pp 459–464 Wang X, Shi Z, Zhang F, Wang Y (2015) Mutual trust based scheduling for (semi) autonomous multi-agent systems. In: American control conference (ACC), pp 459–464
40.
Zurück zum Zitat Cunningham A, Keddy-Hector W, Sinha U, Whalen D, Kruse D, Braasch J, Wen J (2014) Jamster: a mobile dual-arm assistive robot with Jamboxx control. In: Conference on automation science and engineering (CASE), pp 509–514 Cunningham A, Keddy-Hector W, Sinha U, Whalen D, Kruse D, Braasch J, Wen J (2014) Jamster: a mobile dual-arm assistive robot with Jamboxx control. In: Conference on automation science and engineering (CASE), pp 509–514
42.
Zurück zum Zitat Venator E, Lee GS, Newman W (2013) Hardware and software architecture of ABBY: an industrial mobile manipulator. In: 2013 IEEE international conference on automation science and engineering (CASE), IEEE, pp 324–329 Venator E, Lee GS, Newman W (2013) Hardware and software architecture of ABBY: an industrial mobile manipulator. In: 2013 IEEE international conference on automation science and engineering (CASE), IEEE, pp 324–329
43.
Zurück zum Zitat Madigan EA, Newman WS (2012) What do users want from “smart wheelchairs”. In: NI 2012: Proceedings of the 11th international congress on nursing informatics, 2012. American Medical Informatics Association Madigan EA, Newman WS (2012) What do users want from “smart wheelchairs”. In: NI 2012: Proceedings of the 11th international congress on nursing informatics, 2012. American Medical Informatics Association
44.
Zurück zum Zitat Pineau J, Atrash A (2007) SmartWheeler: a robotic wheelchair test-bed for investigating new models of human-robot interaction. In: AAAI spring symposium: multidisciplinary collaboration for socially assistive robotics, pp 59–64 Pineau J, Atrash A (2007) SmartWheeler: a robotic wheelchair test-bed for investigating new models of human-robot interaction. In: AAAI spring symposium: multidisciplinary collaboration for socially assistive robotics, pp 59–64
Metadaten
Titel
Baxter-On-Wheels (BOW): An Assistive Mobile Manipulator for Mobility Impaired Individuals
verfasst von
Lu Lu
John T. Wen
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-40533-9_3

Neuer Inhalt