Skip to main content

2019 | OriginalPaper | Buchkapitel

Bayesian Best-Arm Identification for Selecting Influenza Mitigation Strategies

verfasst von : Pieter J. K. Libin, Timothy Verstraeten, Diederik M. Roijers, Jelena Grujic, Kristof Theys, Philippe Lemey, Ann Nowé

Erschienen in: Machine Learning and Knowledge Discovery in Databases

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Pandemic influenza has the epidemic potential to kill millions of people. While various preventive measures exist (i.a., vaccination and school closures), deciding on strategies that lead to their most effective and efficient use remains challenging. To this end, individual-based epidemiological models are essential to assist decision makers in determining the best strategy to curb epidemic spread. However, individual-based models are computationally intensive and it is therefore pivotal to identify the optimal strategy using a minimal amount of model evaluations. Additionally, as epidemiological modeling experiments need to be planned, a computational budget needs to be specified a priori. Consequently, we present a new sampling technique to optimize the evaluation of preventive strategies using fixed budget best-arm identification algorithms. We use epidemiological modeling theory to derive knowledge about the reward distribution which we exploit using Bayesian best-arm identification algorithms (i.e., Top-two Thompson sampling and BayesGap). We evaluate these algorithms in a realistic experimental setting and demonstrate that it is possible to identify the optimal strategy using only a limited number of model evaluations, i.e., 2-to-3 times faster compared to the uniform sampling method, the predominant technique used for epidemiological decision making in the literature. Finally, we contribute and evaluate a statistic for Top-two Thompson sampling to inform the decision makers about the confidence of an arm recommendation. Code related to this paper is available at: https://​plibin-vub.​github.​io/​epidemic-bandits.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
Literatur
1.
Zurück zum Zitat Audibert, J.Y., Bubeck, S.: Best arm identification in multi-armed bandits. In: COLT-23th Conference on Learning Theory (2010) Audibert, J.Y., Bubeck, S.: Best arm identification in multi-armed bandits. In: COLT-23th Conference on Learning Theory (2010)
2.
Zurück zum Zitat Basta, N.E., Chao, D.L., Halloran, M.E., Matrajt, L., Longini, I.M.: Strategies for pandemic and seasonal influenza vaccination of schoolchildren in the United States. Am. J. Epidemiol. 170(6), 679–686 (2009)CrossRef Basta, N.E., Chao, D.L., Halloran, M.E., Matrajt, L., Longini, I.M.: Strategies for pandemic and seasonal influenza vaccination of schoolchildren in the United States. Am. J. Epidemiol. 170(6), 679–686 (2009)CrossRef
5.
Zurück zum Zitat Bubeck, S., Munos, R., Stoltz, G.: Pure exploration in finitely-armed and continuous-armed bandits. Theor. Comput. Sci. 412(19), 1832–1852 (2011)MathSciNetMATHCrossRef Bubeck, S., Munos, R., Stoltz, G.: Pure exploration in finitely-armed and continuous-armed bandits. Theor. Comput. Sci. 412(19), 1832–1852 (2011)MathSciNetMATHCrossRef
6.
Zurück zum Zitat Chao, D.L., Halloran, M.E., Obenchain, V.J., Longini Jr., I.M.: FluTE, a publicly available stochastic influenza epidemic simulation model. PLoS Comput. Biol. 6(1), e1000656 (2010)MathSciNetCrossRef Chao, D.L., Halloran, M.E., Obenchain, V.J., Longini Jr., I.M.: FluTE, a publicly available stochastic influenza epidemic simulation model. PLoS Comput. Biol. 6(1), e1000656 (2010)MathSciNetCrossRef
7.
Zurück zum Zitat Chao, D.L., Halstead, S.B., Halloran, M.E., Longini, I.M.: Controlling Dengue with Vaccines in Thailand. PLoS Negl. Trop. Dis. 6(10), e1876 (2012)CrossRef Chao, D.L., Halstead, S.B., Halloran, M.E., Longini, I.M.: Controlling Dengue with Vaccines in Thailand. PLoS Negl. Trop. Dis. 6(10), e1876 (2012)CrossRef
8.
Zurück zum Zitat Chapelle, O., Li, L.: An empirical evaluation of Thompson sampling. In: Advances in Neural Information Processing Systems, pp. 2249–2257 (2011) Chapelle, O., Li, L.: An empirical evaluation of Thompson sampling. In: Advances in Neural Information Processing Systems, pp. 2249–2257 (2011)
9.
Zurück zum Zitat Dorigatti, I., Cauchemez, S., Pugliese, A., Ferguson, N.M.: A new approach to characterising infectious disease transmission dynamics from sentinel surveillance: application to the Italian 2009/2010 A/H1N1 influenza pandemic. Epidemics 4(1), 9–21 (2012)CrossRef Dorigatti, I., Cauchemez, S., Pugliese, A., Ferguson, N.M.: A new approach to characterising infectious disease transmission dynamics from sentinel surveillance: application to the Italian 2009/2010 A/H1N1 influenza pandemic. Epidemics 4(1), 9–21 (2012)CrossRef
10.
Zurück zum Zitat Enserink, M.: Crisis underscores fragility of vaccine production system. Science 306(5695), 385 (2004)CrossRef Enserink, M.: Crisis underscores fragility of vaccine production system. Science 306(5695), 385 (2004)CrossRef
11.
Zurück zum Zitat Eubank, S., Kumar, V., Marathe, M., Srinivasan, A., Wang, N.: Structure of social contact networks and their impact on epidemics. DIMACS Ser. Discrete Math. Theor. Comput. Sci 70(0208005), 181 (2006)MathSciNet Eubank, S., Kumar, V., Marathe, M., Srinivasan, A., Wang, N.: Structure of social contact networks and their impact on epidemics. DIMACS Ser. Discrete Math. Theor. Comput. Sci 70(0208005), 181 (2006)MathSciNet
12.
Zurück zum Zitat Even-Dar, E., Mannor, S., Mansour, Y.: Action elimination and stopping conditions for the multi-armed bandit and reinforcement learning problems. J. Mach. Learn. Res. 7(Jun), 1079–1105 (2006)MathSciNetMATH Even-Dar, E., Mannor, S., Mansour, Y.: Action elimination and stopping conditions for the multi-armed bandit and reinforcement learning problems. J. Mach. Learn. Res. 7(Jun), 1079–1105 (2006)MathSciNetMATH
13.
Zurück zum Zitat Ferguson, N.M., Cummings, D.A.T., Cauchemez, S., Fraser, C.: Others: strategies for containing an emerging influenza pandemic in Southeast Asia. Nature 437(7056), 209 (2005)CrossRef Ferguson, N.M., Cummings, D.A.T., Cauchemez, S., Fraser, C.: Others: strategies for containing an emerging influenza pandemic in Southeast Asia. Nature 437(7056), 209 (2005)CrossRef
14.
Zurück zum Zitat Fraser, C., Cummings, D.A.T., Klinkenberg, D., Burke, D.S., Ferguson, N.M.: Influenza transmission in households during the 1918 pandemic. Am. J. Epidemiol. 174(5), 505–514 (2011)CrossRef Fraser, C., Cummings, D.A.T., Klinkenberg, D., Burke, D.S., Ferguson, N.M.: Influenza transmission in households during the 1918 pandemic. Am. J. Epidemiol. 174(5), 505–514 (2011)CrossRef
15.
Zurück zum Zitat Fumanelli, L., Ajelli, M., Merler, S., Ferguson, N.M., Cauchemez, S.: Model-based comprehensive analysis of school closure policies for mitigating influenza epidemics and pandemics. PLoS Comput. Biol. 12(1), e1004681 (2016)CrossRef Fumanelli, L., Ajelli, M., Merler, S., Ferguson, N.M., Cauchemez, S.: Model-based comprehensive analysis of school closure policies for mitigating influenza epidemics and pandemics. PLoS Comput. Biol. 12(1), e1004681 (2016)CrossRef
16.
Zurück zum Zitat Garivier, A., Kaufmann, E.: Optimal best arm identification with fixed confidence. In: Conference on Learning Theory, pp. 998–1027 (2016) Garivier, A., Kaufmann, E.: Optimal best arm identification with fixed confidence. In: Conference on Learning Theory, pp. 998–1027 (2016)
17.
Zurück zum Zitat Germann, T.C., Kadau, K., Longini, I.M., Macken, C.A.: Mitigation strategies for pandemic influenza in the United States. Proc. Nat. Acad. Sci. U.S.A. 103(15), 5935–5940 (2006)CrossRef Germann, T.C., Kadau, K., Longini, I.M., Macken, C.A.: Mitigation strategies for pandemic influenza in the United States. Proc. Nat. Acad. Sci. U.S.A. 103(15), 5935–5940 (2006)CrossRef
18.
Zurück zum Zitat Halloran, M.E., Longini, I.M., Nizam, A., Yang, Y.: Containing bioterrorist smallpox. Science (New York, N.Y.) 298(5597), 1428–1432 (2002)CrossRef Halloran, M.E., Longini, I.M., Nizam, A., Yang, Y.: Containing bioterrorist smallpox. Science (New York, N.Y.) 298(5597), 1428–1432 (2002)CrossRef
19.
Zurück zum Zitat Hartfield, M., Alizon, S.: Introducing the outbreak threshold in epidemiology. PLoS Pathog 9(6), e1003277 (2013)CrossRef Hartfield, M., Alizon, S.: Introducing the outbreak threshold in epidemiology. PLoS Pathog 9(6), e1003277 (2013)CrossRef
21.
Zurück zum Zitat Hoffman, M., Shahriari, B., Freitas, N.: On correlation and budget constraints in model-based bandit optimization with application to automatic machine learning. In: Artificial Intelligence and Statistics, pp. 365–374 (2014) Hoffman, M., Shahriari, B., Freitas, N.: On correlation and budget constraints in model-based bandit optimization with application to automatic machine learning. In: Artificial Intelligence and Statistics, pp. 365–374 (2014)
22.
Zurück zum Zitat Honda, J., Takemura, A.: Optimality of Thompson sampling for Gaussian bandits depends on priors. In: AISTATS, pp. 375–383 (2014) Honda, J., Takemura, A.: Optimality of Thompson sampling for Gaussian bandits depends on priors. In: AISTATS, pp. 375–383 (2014)
23.
Zurück zum Zitat Jennison, C., Johnstone, I.M., Turnbull, B.W.: Asymptotically optimal procedures for sequential adaptive selection of the best of several normal means. Stat. Decis. Theory Relat. Top. III 2, 55–86 (1982)MathSciNetMATHCrossRef Jennison, C., Johnstone, I.M., Turnbull, B.W.: Asymptotically optimal procedures for sequential adaptive selection of the best of several normal means. Stat. Decis. Theory Relat. Top. III 2, 55–86 (1982)MathSciNetMATHCrossRef
24.
Zurück zum Zitat Kaufmann, E., Cappé, O., Garivier, A.: On the complexity of best arm identification in multi-armed bandit models. J. Mach. Learn. Res. 17(1), 1–42 (2016)MathSciNetMATH Kaufmann, E., Cappé, O., Garivier, A.: On the complexity of best arm identification in multi-armed bandit models. J. Mach. Learn. Res. 17(1), 1–42 (2016)MathSciNetMATH
25.
Zurück zum Zitat Kaufmann, E., Kalyanakrishnan, S.: Information complexity in bandit subset selection. In: Conference on Learning Theory, pp. 228–251 (2013) Kaufmann, E., Kalyanakrishnan, S.: Information complexity in bandit subset selection. In: Conference on Learning Theory, pp. 228–251 (2013)
26.
Zurück zum Zitat Libin, P., Verstraeten, T., Theys, K., Roijers, D.M., Vrancx, P., Nowé, A.: Efficient evaluation of influenza mitigation strategies using preventive bandits. In: Sukthankar, G., Rodriguez-Aguilar, J.A. (eds.) AAMAS 2017. LNCS (LNAI), vol. 10643, pp. 67–85. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71679-4_5CrossRef Libin, P., Verstraeten, T., Theys, K., Roijers, D.M., Vrancx, P., Nowé, A.: Efficient evaluation of influenza mitigation strategies using preventive bandits. In: Sukthankar, G., Rodriguez-Aguilar, J.A. (eds.) AAMAS 2017. LNCS (LNAI), vol. 10643, pp. 67–85. Springer, Cham (2017). https://​doi.​org/​10.​1007/​978-3-319-71679-4_​5CrossRef
27.
Zurück zum Zitat Lloyd-Smith, J.O., Schreiber, S.J., Kopp, P.E., Getz, W.M.: Superspreading and the effect of individual variation on disease emergence. Nature 438(7066), 355–359 (2005)CrossRef Lloyd-Smith, J.O., Schreiber, S.J., Kopp, P.E., Getz, W.M.: Superspreading and the effect of individual variation on disease emergence. Nature 438(7066), 355–359 (2005)CrossRef
28.
Zurück zum Zitat Medlock, J., Galvani, A.P.: Optimizing influenza vaccine distribution. Science 325(5948), 1705–1708 (2009)CrossRef Medlock, J., Galvani, A.P.: Optimizing influenza vaccine distribution. Science 325(5948), 1705–1708 (2009)CrossRef
30.
Zurück zum Zitat Powell, W.B., Ryzhov, I.O.: Optimal Learning, vol. 841. Wiley, Hoboken (2012)CrossRef Powell, W.B., Ryzhov, I.O.: Optimal Learning, vol. 841. Wiley, Hoboken (2012)CrossRef
31.
Zurück zum Zitat Russo, D.: Simple Bayesian algorithms for best arm identification. In: Conference on Learning Theory, pp. 1417–1418 (2016) Russo, D.: Simple Bayesian algorithms for best arm identification. In: Conference on Learning Theory, pp. 1417–1418 (2016)
32.
Zurück zum Zitat Watts, D.J., Muhamad, R., Medina, D.C., Dodds, P.S.: Multiscale, resurgent epidemics in a hierarchical metapopulation model. Proc. Nat. Acad. Sci. U.S.A. 102(32), 11157–11162 (2005)CrossRef Watts, D.J., Muhamad, R., Medina, D.C., Dodds, P.S.: Multiscale, resurgent epidemics in a hierarchical metapopulation model. Proc. Nat. Acad. Sci. U.S.A. 102(32), 11157–11162 (2005)CrossRef
33.
Zurück zum Zitat WHO: WHO guidelines on the use of vaccines and antivirals during influenza pandemics (2004) WHO: WHO guidelines on the use of vaccines and antivirals during influenza pandemics (2004)
34.
Zurück zum Zitat Willem, L., Stijven, S., Vladislavleva, E., Broeckhove, J., Beutels, P., Hens, N.: Active learning to understand infectious disease models and improve policy making. PLoS Comput. Biol. 10(4), e1003563 (2014)CrossRef Willem, L., Stijven, S., Vladislavleva, E., Broeckhove, J., Beutels, P., Hens, N.: Active learning to understand infectious disease models and improve policy making. PLoS Comput. Biol. 10(4), e1003563 (2014)CrossRef
35.
Zurück zum Zitat Wu, J.T., Riley, S., Fraser, C., Leung, G.M.: Reducing the impact of the next influenza pandemic using household-based public health interventions. PLoS Med. 3(9), e361 (2006)CrossRef Wu, J.T., Riley, S., Fraser, C., Leung, G.M.: Reducing the impact of the next influenza pandemic using household-based public health interventions. PLoS Med. 3(9), e361 (2006)CrossRef
Metadaten
Titel
Bayesian Best-Arm Identification for Selecting Influenza Mitigation Strategies
verfasst von
Pieter J. K. Libin
Timothy Verstraeten
Diederik M. Roijers
Jelena Grujic
Kristof Theys
Philippe Lemey
Ann Nowé
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-10997-4_28