Skip to main content

2020 | OriginalPaper | Buchkapitel

Bayesian Convolutional Neural Network: Robustly Quantify Uncertainty for Misclassifications Detection

verfasst von : Cedrique Rovile Njieutcheu Tassi

Erschienen in: Pattern Recognition and Artificial Intelligence

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

For safety and mission critical systems relying on Convolutional Neural Networks (CNNs), it is crucial to avoid incorrect predictions that can cause accident or financial crisis. This can be achieved by quantifying and interpreting the predictive uncertainty. Current methods for uncertainty quantification rely on Bayesian CNNs that approximate Bayesian inference via dropout sampling. This paper investigates different dropout methods to robustly quantify the predictive uncertainty for misclassifications detection. Specifically, the following questions are addressed: In which layers should activations be sampled? Which dropout sampling mask should be used? What dropout probability should be used? How to choose the number of ensemble members? How to combine ensemble members? How to quantify the classification uncertainty? To answer these questions, experiments were conducted on three datasets using three different network architectures. Experimental results showed that the classification uncertainty is best captured by averaging the predictions of all stochastic CNNs sampled from the Bayesian CNN and by validating the predictions of the Bayesian CNN with three uncertainty measures, namely the predictive confidence, predictive entropy and standard deviation thresholds. The results showed further that the optimal dropout method specified through the sampling location, sampling mask, inference dropout probability, and number of stochastic forward passes depends on both the dataset and the designed network architecture. Notwithstanding this, I proposed to sample inputs to max pooling layers with a cascade of Multiplicative Gaussian Mask (MGM) followed by Multiplicative Bernoulli Spatial Mask (MBSM) to robustly quantify the classification uncertainty, while keeping the loss in performance low.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Gal, Y., Ghahramani, Z.: Dropout as a bayesian approximation: representing model uncertainty in deep learning. In: Proceedings of the 33rd International Conference on Machine Learning, vol. 48, pp. 1050–1059 (2016) Gal, Y., Ghahramani, Z.: Dropout as a bayesian approximation: representing model uncertainty in deep learning. In: Proceedings of the 33rd International Conference on Machine Learning, vol. 48, pp. 1050–1059 (2016)
4.
Zurück zum Zitat Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014)MathSciNetMATH Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014)MathSciNetMATH
13.
Zurück zum Zitat Krizhevsky, A.: Learning multiple layers of features from tiny images. Master’s thesis, University of Toronto (2009) Krizhevsky, A.: Learning multiple layers of features from tiny images. Master’s thesis, University of Toronto (2009)
14.
Zurück zum Zitat Stallkamp, J., Schlipsing, M., Salmen, J., Igel, C. (eds.): The German traffic sign recognition benchmark: a multi-class classification competition. In: The 2011 International Joint Conference on Neural Networks, San Jose, CA, USA. IEEE (2011) Stallkamp, J., Schlipsing, M., Salmen, J., Igel, C. (eds.): The German traffic sign recognition benchmark: a multi-class classification competition. In: The 2011 International Joint Conference on Neural Networks, San Jose, CA, USA. IEEE (2011)
Metadaten
Titel
Bayesian Convolutional Neural Network: Robustly Quantify Uncertainty for Misclassifications Detection
verfasst von
Cedrique Rovile Njieutcheu Tassi
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-37548-5_10