Skip to main content

2025 | OriginalPaper | Buchkapitel

Bees Algorithm for Hyperparameter Search with Deep Learning to Estimate the Remaining Useful Life of Ball Bearings

verfasst von : Anurakt Kumar, Satyam Kumar, Neha Gupta, Nathinee Theinnoi, D. T. Pham

Erschienen in: Intelligent Engineering Optimisation with the Bees Algorithm

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Hyperparameter searching is one of the significant challenges in training deep learning models. To solve this challenge, the Bees Algorithm (BA), which simulates the foraging behaviour of honey bees, is used for hyperparameter searching and finding the best set of hyperparameters for a given deep learning model. This study applies a two-parameter version of the Bees Algorithm (BA2) to search for the best set of hyperparameters for a Convolutional Neural Network (CNN) combined with a Long Short-Term Memory (LSTM) model. Then, the model is used to predict the remaining useful life (RUL) of ball bearings. BA2 uses the traplining foraging technique of bees to integrate explorative and exploitative search mechanisms, reduce the number of parameters to only two and improve the remaining useful life (RUL) prediction. The algorithm can find a set of hyperparameters that makes the deep learning model perform better than the IEEE PHM 2012 Prognostic challenge winner by 38.97%.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat BS EN 13306: 2017 BSI Standards Publication Maintenance—Maintenance Terminology BS EN 13306: 2017 BSI Standards Publication Maintenance—Maintenance Terminology
12.
Zurück zum Zitat Razzak MI, Naz S, Zaib A (2018) Deep learning for medical image processing: overview, challenges and the future. In: Dey N, Ashour AS, Borra S (eds) Classification in bioapps: automation of decision making. Springer International Publishing, Cham, pp 323–350. https://doi.org/10.1007/978-3-319-65981-7_12 Razzak MI, Naz S, Zaib A (2018) Deep learning for medical image processing: overview, challenges and the future. In: Dey N, Ashour AS, Borra S (eds) Classification in bioapps: automation of decision making. Springer International Publishing, Cham, pp 323–350. https://​doi.​org/​10.​1007/​978-3-319-65981-7_​12
17.
20.
Zurück zum Zitat Amodei D et al (2016) Deep speech 2 : end-to-end speech recognition in english and mandarin. In: Balcan MF, Weinberger KQ (eds) Proceedings of the 33rd international conference on machine learning, Proceedings of machine learning research, vol 48. New York, USA. PMLR, pp 173–182 [Online]. Available: https://proceedings.mlr.press/v48/amodei16.html Amodei D et al (2016) Deep speech 2 : end-to-end speech recognition in english and mandarin. In: Balcan MF, Weinberger KQ (eds) Proceedings of the 33rd international conference on machine learning, Proceedings of machine learning research, vol 48. New York, USA. PMLR, pp 173–182 [Online]. Available: https://​proceedings.​mlr.​press/​v48/​amodei16.​html
27.
40.
Zurück zum Zitat Lorenzo PR, Nalepa J, Kawulok M, Ramos LS, Pastor JR (2017) Particle swarm optimization for hyper-parameter selection in deep neural networks. In: GECCO 2017—proceedings of the 2017 genetic and evolutionary computation conference, pp 481–488. https://doi.org/10.1145/3071178.3071208 Lorenzo PR, Nalepa J, Kawulok M, Ramos LS, Pastor JR (2017) Particle swarm optimization for hyper-parameter selection in deep neural networks. In: GECCO 2017—proceedings of the 2017 genetic and evolutionary computation conference, pp 481–488. https://​doi.​org/​10.​1145/​3071178.​3071208
44.
Zurück zum Zitat Bacanin N, Stoean C, Zivkovic M, Rakic M, Strulak-Wójcikiewicz R, Stoean R (2023) On the benefits of using metaheuristics in the hyperparameter tuning of deep learning models for energy load forecasting. Energies (Basel) 16(3). https://doi.org/10.3390/en16031434 Bacanin N, Stoean C, Zivkovic M, Rakic M, Strulak-Wójcikiewicz R, Stoean R (2023) On the benefits of using metaheuristics in the hyperparameter tuning of deep learning models for energy load forecasting. Energies (Basel) 16(3). https://​doi.​org/​10.​3390/​en16031434
48.
Zurück zum Zitat Strumberger I, Tuba E, Bavcanin N, Zivkovic M, Beko M, Tuba M (2019) Designing convolutional neural network architecture by the firefly algorithm. In: 2019 International young engineers forum (YEF-ECE), pp 59–65 Strumberger I, Tuba E, Bavcanin N, Zivkovic M, Beko M, Tuba M (2019) Designing convolutional neural network architecture by the firefly algorithm. In: 2019 International young engineers forum (YEF-ECE), pp 59–65
50.
Zurück zum Zitat Cuong-Le T, Minh H-L, Sang-To T, Khatir S, Mirjalili S, Abdel Wahab M (2022) A novel version of grey wolf optimizer based on a balance function and its application for hyperparameters optimization in deep neural network (DNN) for structural damage identification. Eng Fail Anal 142:106829. https://doi.org/10.1016/j.engfailanal.2022.106829 Cuong-Le T, Minh H-L, Sang-To T, Khatir S, Mirjalili S, Abdel Wahab M (2022) A novel version of grey wolf optimizer based on a balance function and its application for hyperparameters optimization in deep neural network (DNN) for structural damage identification. Eng Fail Anal 142:106829. https://​doi.​org/​10.​1016/​j.​engfailanal.​2022.​106829
53.
Zurück zum Zitat Trajkovski A, Madjarov G (2022) Model hyper parameter tuning using ant colony optimization, pp 37–41 Trajkovski A, Madjarov G (2022) Model hyper parameter tuning using ant colony optimization, pp 37–41
55.
Zurück zum Zitat IEEE (2012) IEEE PHM 2012 prognostic challenge—outline, experiments, scoring of results, winners. IEEE PHM, pp 1–11 IEEE (2012) IEEE PHM 2012 prognostic challenge—outline, experiments, scoring of results, winners. IEEE PHM, pp 1–11
56.
Zurück zum Zitat Sutrisno E, Oh H, Vasan ASS, Pecht M (2012) Estimation of remaining useful life of ball bearings using data driven methodologies. In: PHM 2012—2012 IEEE international conference on prognostics and health management: enhancing safety, efficiency, availability, and effectiveness of systems through PHM technology and application, conference program, vol 2, pp 1–7. https://doi.org/10.1109/ICPHM.2012.6299548 Sutrisno E, Oh H, Vasan ASS, Pecht M (2012) Estimation of remaining useful life of ball bearings using data driven methodologies. In: PHM 2012—2012 IEEE international conference on prognostics and health management: enhancing safety, efficiency, availability, and effectiveness of systems through PHM technology and application, conference program, vol 2, pp 1–7. https://​doi.​org/​10.​1109/​ICPHM.​2012.​6299548
73.
Zurück zum Zitat Pham DT, Ghanbarzadeh A, Koç E, Otri S, Rahim S, Zaidi M (2006) The bees algorithm—a novel tool for complex optimisation problems. In: Intelligent production machines and systems—2nd I*PROMS virtual international conference 3–14 July 2006, no December, pp 454–459. https://doi.org/10.1016/B978-008045157-2/50081-X Pham DT, Ghanbarzadeh A, Koç E, Otri S, Rahim S, Zaidi M (2006) The bees algorithm—a novel tool for complex optimisation problems. In: Intelligent production machines and systems—2nd I*PROMS virtual international conference 3–14 July 2006, no December, pp 454–459. https://​doi.​org/​10.​1016/​B978-008045157-2/​50081-X
74.
Zurück zum Zitat Ismail AH, Pham DT (2023) Bees traplining metaphors for the vehicle routing problem using a decomposition approach. In: Pham BT, Hartono N (eds) Intelligent production and manufacturing optimisation—the bees algorithm approach. Springer International Publishing, Cham, pp 261–287. https://doi.org/10.1007/978-3-031-14537-7_16 Ismail AH, Pham DT (2023) Bees traplining metaphors for the vehicle routing problem using a decomposition approach. In: Pham BT, Hartono N (eds) Intelligent production and manufacturing optimisation—the bees algorithm approach. Springer International Publishing, Cham, pp 261–287. https://​doi.​org/​10.​1007/​978-3-031-14537-7_​16
Metadaten
Titel
Bees Algorithm for Hyperparameter Search with Deep Learning to Estimate the Remaining Useful Life of Ball Bearings
verfasst von
Anurakt Kumar
Satyam Kumar
Neha Gupta
Nathinee Theinnoi
D. T. Pham
Copyright-Jahr
2025
DOI
https://doi.org/10.1007/978-3-031-64936-3_11

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.