Skip to main content

2025 | OriginalPaper | Buchkapitel

Bees Local Phase Quantisation Feature Selection for RGB-D Facial Expression Recognition

verfasst von : Seyed Muhammad Hossein Mousavi, Atiye Ilanloo

Erschienen in: Intelligent Engineering Optimisation with the Bees Algorithm

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Feature selection can be defined as an optimisation problem and solved by bioinspired algorithms. The Bees Algorithm (BA) returns great performance in the feature selection optimisation task. On the other hand, local phase quantisation (LPQ) is a frequency domain feature that has excellent performance on depth images. Here, after extracting LPQ features from RGB (colour) and depth images from the Iranian Kinect Face Database (IKFDB), the Bees feature selection algorithm is applied to select the desired number of features for final classification tasks. IKFDB is recorded with Kinect sensor V.2 and contains colour and depth images for facial and facial microexpression recognition purposes. Here, five facial expressions, Anger, Joy, Surprise, Disgust and Fear, are used for final validation. The proposed Bees LPQ method is compared with Particle Swarm Optimisation (PSO) LPQ, PCA LPQ, Lasso LPQ, and just LPQ features for classification tasks with Support Vector Machines (SVM), K-Nearest Neighbourhood (KNN), Shallow Neural Network and Ensemble Subspace KNN. The returned results show a promising performance of the proposed algorithm (99% accuracy) in comparison with others.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Mousavi SMH (2018) A new way to age estimation for RGB-D images, based on a new face detection and extraction method for depth images. Int J Image Graph Sig Process 10:10 Mousavi SMH (2018) A new way to age estimation for RGB-D images, based on a new face detection and extraction method for depth images. Int J Image Graph Sig Process 10:10
2.
Zurück zum Zitat Mousavi SHM, Mirinezhad SY (2021) Iranian kinect face database (IKFDB): a color-depth based face database collected by kinect v.2 sensor. SN Appl Sci 3(1):1–7 Mousavi SHM, Mirinezhad SY (2021) Iranian kinect face database (IKFDB): a color-depth based face database collected by kinect v.2 sensor. SN Appl Sci 3(1):1–7
3.
Zurück zum Zitat Ekman P, Friesen WV (1978) Facial action coding system. Environ Psychol Nonverbal Behav Ekman P, Friesen WV (1978) Facial action coding system. Environ Psychol Nonverbal Behav
4.
Zurück zum Zitat Singh A, Sharma S, Singh J (2021) Nature-inspired algorithms for wireless sensor networks: a comprehensive survey. Comput Sci Rev 39:100342MathSciNetCrossRef Singh A, Sharma S, Singh J (2021) Nature-inspired algorithms for wireless sensor networks: a comprehensive survey. Comput Sci Rev 39:100342MathSciNetCrossRef
5.
Zurück zum Zitat Mousavi SM, Hossein VC, Gherman T (2020) An evolutionary pentagon support vector finder method. Expert Syst Appl 150:113284CrossRef Mousavi SM, Hossein VC, Gherman T (2020) An evolutionary pentagon support vector finder method. Expert Syst Appl 150:113284CrossRef
6.
Zurück zum Zitat Singh A et al (2021) A Gaussian process regression approach to predict the k-barrier coverage probability for intrusion detection in wireless sensor networks. Expert Syst Appl 172:114603 Singh A et al (2021) A Gaussian process regression approach to predict the k-barrier coverage probability for intrusion detection in wireless sensor networks. Expert Syst Appl 172:114603
7.
Zurück zum Zitat Mousavi SMH (2019) A new clustering method using evolutionary algorithms for determining initial states, and diverse pairwise distances for clustering. Int J Mechatron Electr Comput Technol (IJMEC) 9(31):4098–110 Mousavi SMH (2019) A new clustering method using evolutionary algorithms for determining initial states, and diverse pairwise distances for clustering. Int J Mechatron Electr Comput Technol (IJMEC) 9(31):4098–110
8.
Zurück zum Zitat Pham DT et al (2007) Data clustering using the Bees algorithm Pham DT et al (2007) Data clustering using the Bees algorithm
9.
Zurück zum Zitat Ji B et al (2020) Bioinspired feature selection: an improved binary particle swarm optimization approach. IEEE Access 8:85989–86002 Ji B et al (2020) Bioinspired feature selection: an improved binary particle swarm optimization approach. IEEE Access 8:85989–86002
10.
Zurück zum Zitat Pham DT et al (2006) The Bees algorithm—a novel tool for complex optimization problems. Intelligent production machines and systems. Elsevier Science Ltd., pp 454–59 Pham DT et al (2006) The Bees algorithm—a novel tool for complex optimization problems. Intelligent production machines and systems. Elsevier Science Ltd., pp 454–59
11.
Zurück zum Zitat Pham DT et al (2005) The Bees algorithm. Technical note, Manufacturing Engineering Centre, Cardiff University, UK, pp 44–48 Pham DT et al (2005) The Bees algorithm. Technical note, Manufacturing Engineering Centre, Cardiff University, UK, pp 44–48
12.
Zurück zum Zitat Ismail AH et al (2021) Combinatorial Bees algorithm for vehicle routing problem. Macromol Symp 396(1) Ismail AH et al (2021) Combinatorial Bees algorithm for vehicle routing problem. Macromol Symp 396(1)
13.
Zurück zum Zitat Gonzalez-Jorge H et al (2015) Metrological comparison between Kinect I and Kinect II sensors. Measurement 70:21–26CrossRef Gonzalez-Jorge H et al (2015) Metrological comparison between Kinect I and Kinect II sensors. Measurement 70:21–26CrossRef
14.
Zurück zum Zitat Charles V, Gherman T (2013) Achieving competitive advantage through big data. Strategic implications. Middle-East J Sci Res 16(8):1069–1074 Charles V, Gherman T (2013) Achieving competitive advantage through big data. Strategic implications. Middle-East J Sci Res 16(8):1069–1074
15.
Zurück zum Zitat Mousavi SMH, Prasath VS, Mousavi SMH (2019) Persian classical music instrument recognition (PCMIR) using a novel Persian music database. In: 2019 9th International conference on computer and knowledge engineering (ICCKE). IEEE Mousavi SMH, Prasath VS, Mousavi SMH (2019) Persian classical music instrument recognition (PCMIR) using a novel Persian music database. In: 2019 9th International conference on computer and knowledge engineering (ICCKE). IEEE
16.
Zurück zum Zitat Mousavi SMH, MiriNezhad SY, Mirmoini A (2017) A new support vector finder method, based on triangular calculations and K-means clustering. In: 2017 9th International conference on information and knowledge technology (IKT). IEEE Mousavi SMH, MiriNezhad SY, Mirmoini A (2017) A new support vector finder method, based on triangular calculations and K-means clustering. In: 2017 9th International conference on information and knowledge technology (IKT). IEEE
17.
Zurück zum Zitat Dezfoulian, Mir Hossein et al (2016) Optimization of the Ho-Kashyap classification algorithm using appropriate learning samples. In: 2016 8th International conference on information and knowledge technology (IKT). IEEE Dezfoulian, Mir Hossein et al (2016) Optimization of the Ho-Kashyap classification algorithm using appropriate learning samples. In: 2016 8th International conference on information and knowledge technology (IKT). IEEE
18.
Zurück zum Zitat Yuan B, Cao H, Chu J (2012) Combining local binary pattern and local phase quantization for face recognition. In: 2012 International symposium on biometrics and security technologies. IEEE Yuan B, Cao H, Chu J (2012) Combining local binary pattern and local phase quantization for face recognition. In: 2012 International symposium on biometrics and security technologies. IEEE
19.
Zurück zum Zitat Abdi H, Williams LJ (2010) Principal component analysis. Wiley Interdisc Rev Comput Stat 2(4):433–459CrossRef Abdi H, Williams LJ (2010) Principal component analysis. Wiley Interdisc Rev Comput Stat 2(4):433–459CrossRef
20.
Zurück zum Zitat Tibshirani R (1996) Regression shrinkage and selection via the Lasso. J Roy Stat Soc: Ser B (Methodol) 58(1):267–288MathSciNetCrossRef Tibshirani R (1996) Regression shrinkage and selection via the Lasso. J Roy Stat Soc: Ser B (Methodol) 58(1):267–288MathSciNetCrossRef
21.
Zurück zum Zitat Kibria BM, Banik S (2020) Some ridge regression estimators and their performances Kibria BM, Banik S (2020) Some ridge regression estimators and their performances
22.
Zurück zum Zitat Jin X et al (2006) Machine learning techniques and chi-square feature selection for cancer classification using SAGE gene expression profiles. In: International workshop on data mining for biomedical applications. Springer, Berlin, Heidelberg Jin X et al (2006) Machine learning techniques and chi-square feature selection for cancer classification using SAGE gene expression profiles. In: International workshop on data mining for biomedical applications. Springer, Berlin, Heidelberg
23.
Zurück zum Zitat Shiraz R, Charles V, Jalalzadeh L (2014) Fuzzy rough DEA model: a possibility and expected value approaches. Expert Syst Appl 41(2):434–444 Shiraz R, Charles V, Jalalzadeh L (2014) Fuzzy rough DEA model: a possibility and expected value approaches. Expert Syst Appl 41(2):434–444
24.
Zurück zum Zitat Zhang Y et al (2014) Feature selection using data envelopment analysis. Knowl-Based Syst 64:70–80 Zhang Y et al (2014) Feature selection using data envelopment analysis. Knowl-Based Syst 64:70–80
25.
Zurück zum Zitat Mistry K et al (2016) A micro-GA embedded PSO feature selection approach to intelligent facial emotion recognition. IEEE Trans Cybern 47(6):1496–1509 Mistry K et al (2016) A micro-GA embedded PSO feature selection approach to intelligent facial emotion recognition. IEEE Trans Cybern 47(6):1496–1509
26.
Zurück zum Zitat Emary E et al (2015) Firefly optimization algorithm for feature selection. In: Proceedings of the 7th Balkan conference on informatics conference Emary E et al (2015) Firefly optimization algorithm for feature selection. In: Proceedings of the 7th Balkan conference on informatics conference
27.
Zurück zum Zitat Alomari O, Othman ZA (2012) Bees algorithm for feature selection in network anomaly detection. J Appl Sci Res 8(3):1748–1756 Alomari O, Othman ZA (2012) Bees algorithm for feature selection in network anomaly detection. J Appl Sci Res 8(3):1748–1756
28.
Zurück zum Zitat Ding H et al (2022) Imbalanced data classification: a KNN and generative adversarial networks-based hybrid approach for intrusion detection. Future Gener Comput Syst 131:240–254 Ding H et al (2022) Imbalanced data classification: a KNN and generative adversarial networks-based hybrid approach for intrusion detection. Future Gener Comput Syst 131:240–254
29.
Zurück zum Zitat Ramasamy K, Balakrishnan K, Velusamy D (2022) Detection of cardiac arrhythmias from ECG signals using FBSE and Jaya optimized ensemble random subspace K-nearest neighbor algorithm. Biomed Signal Process Control 76:103654CrossRef Ramasamy K, Balakrishnan K, Velusamy D (2022) Detection of cardiac arrhythmias from ECG signals using FBSE and Jaya optimized ensemble random subspace K-nearest neighbor algorithm. Biomed Signal Process Control 76:103654CrossRef
30.
Zurück zum Zitat Mahdizadeh M, Zamanzade E (2022) On estimating the area under the ROC curve in ranked set sampling. Stat Methods Med Res. 09622802221097211 Mahdizadeh M, Zamanzade E (2022) On estimating the area under the ROC curve in ranked set sampling. Stat Methods Med Res. 09622802221097211
31.
Zurück zum Zitat Gupta V et al (2022) Detection of R-peaks using fractional Fourier transform and principal component analysis. J Ambient Intell Humanized Comput 13(2):961–972 Gupta V et al (2022) Detection of R-peaks using fractional Fourier transform and principal component analysis. J Ambient Intell Humanized Comput 13(2):961–972
32.
Zurück zum Zitat Fraś M, Witkowski M, Kowalczyk K (2022) Convolutional weighted minimum mean square error filter for joint source separation and dereverberation. In: IEEE international conference on acoustics, speech and signal processing (ICASSP). IEEE Fraś M, Witkowski M, Kowalczyk K (2022) Convolutional weighted minimum mean square error filter for joint source separation and dereverberation. In: IEEE international conference on acoustics, speech and signal processing (ICASSP). IEEE
Metadaten
Titel
Bees Local Phase Quantisation Feature Selection for RGB-D Facial Expression Recognition
verfasst von
Seyed Muhammad Hossein Mousavi
Atiye Ilanloo
Copyright-Jahr
2025
DOI
https://doi.org/10.1007/978-3-031-64936-3_12

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.