Skip to main content

2020 | OriginalPaper | Buchkapitel

Behavior of Composite Materials and Structures in Low Temperature Arctic Conditions

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Advanced composite materials play vital structural roles in automotive, aerospace and marine industries. Drastic reduction in arctic sea ice region over the last three decades has opened new sailing routes which are more efficient and economical. This has resulted in the increased use of marine and naval vessels in extreme low temperature arctic conditions. The fundamental challenge of operating in such cold and harsh environment lies in the understanding of how materials and structures behave and perform in extreme low temperature. In this chapter, the behavior of composite materials and composite sandwich structures in low temperature arctic conditions is presented. Composite sandwich structure far exceeds classical composite laminates in terms of flexural capability and performance. In this work, we experimentally investigate the impact and post-impact compressive and flexural response of Divinycell H-100 foam core sandwich panel with woven carbon fiber reinforced polymer (CFRP) facesheets. Specimens were conditioned and impacted over a temperature range (from room temperature down to −70 °C). Results show that exposure to low temperature inevitably causes more severe damage in the specimens. Post-mortem inspection using x-ray micro-computed tomography revealed complex failure mechanisms in the composite facesheets (such as matrix crack, delamination and fiber breakage) and foam core (core crushing, core shearing and interfacial debonding).
Compression-after-impact (CAI) test results showed that low temperature environment severely influenced the residual strength of composite structures, leading to significant drop in CAI strength with decreasing test temperature. Post-impact three point bending test reveals residual flexural properties are more sensitive to the in-plane compressive property of the CFRP facesheet than the in-plane tensile property. Results also indicate that degradation of flexural rigidity of the sandwich composite panel strongly depends on existing damage state of prior impact test. Analogous to impact behaviour, specimens have much reduced flexural properties when exposed to extreme low temperature conditions.
Understanding material properties and structural performance would subsequently lead to new methods to enhance impact performance in arctic condition. The findings in this study would form fundamental understanding of composites behavior at extreme low temperature environment and the correlation of low temperature effects and dynamic damage behavior of composite sandwich structures.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Vihma T (2014) Effects of arctic sea ice decline on weather and climate: a review. Surv Geophys 35(5):1175–1214CrossRef Vihma T (2014) Effects of arctic sea ice decline on weather and climate: a review. Surv Geophys 35(5):1175–1214CrossRef
2.
Zurück zum Zitat Hazizan MA, Cantwell W (2002) The low velocity impact response of foam-based sandwich structures. Compos Part B Eng 33(3):193–204CrossRef Hazizan MA, Cantwell W (2002) The low velocity impact response of foam-based sandwich structures. Compos Part B Eng 33(3):193–204CrossRef
3.
Zurück zum Zitat Zhang G, Wang B, Ma L, Wu L, Pan S, Yang J (2014) Energy absorption and low velocity impact response of polyurethane foam filled pyramidal lattice core sandwich panels. Compos Struct 108:304–310CrossRef Zhang G, Wang B, Ma L, Wu L, Pan S, Yang J (2014) Energy absorption and low velocity impact response of polyurethane foam filled pyramidal lattice core sandwich panels. Compos Struct 108:304–310CrossRef
4.
Zurück zum Zitat Wang J, Waas AM, Wang H (2013) Experimental and numerical study on the low-velocity impact behavior of foam-core sandwich panels. Compos Struct 96:298–311CrossRef Wang J, Waas AM, Wang H (2013) Experimental and numerical study on the low-velocity impact behavior of foam-core sandwich panels. Compos Struct 96:298–311CrossRef
5.
Zurück zum Zitat Styles M, Compston P, Kalyanasundaram S (2007) The effect of core thickness on the flexural behaviour of aluminium foam sandwich structures. Compos Struct 80(4):532–538CrossRef Styles M, Compston P, Kalyanasundaram S (2007) The effect of core thickness on the flexural behaviour of aluminium foam sandwich structures. Compos Struct 80(4):532–538CrossRef
6.
Zurück zum Zitat Im KH, Cha CS, Kim SK, Yang IY (2001) Effects of temperature on impact damages in CFRP composite laminates. Compos Part B Eng 32(8):669–682CrossRef Im KH, Cha CS, Kim SK, Yang IY (2001) Effects of temperature on impact damages in CFRP composite laminates. Compos Part B Eng 32(8):669–682CrossRef
7.
Zurück zum Zitat López-Puente J, Zaera R, Navarro C (2002) The effect of low temperatures on the intermediate and high velocity impact response of CFRPs. Compos Part B Eng 33(8):559–566CrossRef López-Puente J, Zaera R, Navarro C (2002) The effect of low temperatures on the intermediate and high velocity impact response of CFRPs. Compos Part B Eng 33(8):559–566CrossRef
8.
Zurück zum Zitat Gómez-del Rıo T, Zaera R, Barbero E, Navarro C (2005) Damage in CFRPs due to low velocity impact at low temperature. Compos Part B Eng 36(1):41–50CrossRef Gómez-del Rıo T, Zaera R, Barbero E, Navarro C (2005) Damage in CFRPs due to low velocity impact at low temperature. Compos Part B Eng 36(1):41–50CrossRef
9.
Zurück zum Zitat Lopresto V, Langella A (2014) Composite laminates under dynamic extreme conditions. Procedia Eng 88:173–179CrossRef Lopresto V, Langella A (2014) Composite laminates under dynamic extreme conditions. Procedia Eng 88:173–179CrossRef
10.
Zurück zum Zitat Ibekwe SI, Mensah PF, Li G, Pang SS, Stubblefield MA (2007) Impact and post impact response of laminated beams at low temperatures. Compos Struct 79(1):12–17CrossRef Ibekwe SI, Mensah PF, Li G, Pang SS, Stubblefield MA (2007) Impact and post impact response of laminated beams at low temperatures. Compos Struct 79(1):12–17CrossRef
11.
Zurück zum Zitat Sánchez-Sáez S, Barbero E, Navarro C (2008) Compressive residual strength at low temperatures of composite laminates subjected to low-velocity impacts. Compos Struct 85(3):226–232CrossRef Sánchez-Sáez S, Barbero E, Navarro C (2008) Compressive residual strength at low temperatures of composite laminates subjected to low-velocity impacts. Compos Struct 85(3):226–232CrossRef
12.
Zurück zum Zitat Kang KW, Kim JK (2009) Effect of shape memory alloy on impact damage behavior and residual properties of glass/epoxy laminates under low temperature. Compos Struct 88(3):455–460CrossRef Kang KW, Kim JK (2009) Effect of shape memory alloy on impact damage behavior and residual properties of glass/epoxy laminates under low temperature. Compos Struct 88(3):455–460CrossRef
13.
Zurück zum Zitat Liu J, Zhou Z, Ma L, Xiong J, Wu L (2011) Temperature effects on the strength and crushing behavior of carbon fiber composite truss sandwich cores. Compos Part B Eng 42(7):1860–1866CrossRef Liu J, Zhou Z, Ma L, Xiong J, Wu L (2011) Temperature effects on the strength and crushing behavior of carbon fiber composite truss sandwich cores. Compos Part B Eng 42(7):1860–1866CrossRef
14.
Zurück zum Zitat Erickson MD, Kallmeyer AR, Kellogg KG (2005) Effect of temperature on the low-velocity impact behavior of composite sandwich panels. J Sandw Struct Mater 7(3):245–264CrossRef Erickson MD, Kallmeyer AR, Kellogg KG (2005) Effect of temperature on the low-velocity impact behavior of composite sandwich panels. J Sandw Struct Mater 7(3):245–264CrossRef
15.
Zurück zum Zitat Salehi-Khojin A, Mahinfalah M, Bashirzadeh R, Freeman B (2007) Temperature effects on kevlar/hybrid and carbon fiber composite sandwiches under impact loading. Compos Struct 78(2):197–206CrossRef Salehi-Khojin A, Mahinfalah M, Bashirzadeh R, Freeman B (2007) Temperature effects on kevlar/hybrid and carbon fiber composite sandwiches under impact loading. Compos Struct 78(2):197–206CrossRef
16.
Zurück zum Zitat Yang P, Shams SS, Slay A, Brokate B, Elhajjar R (2015) Evaluation of temperature effects on low velocity impact damage in composite sandwich panels with polymeric foam cores. Compos Struct 129:213–223CrossRef Yang P, Shams SS, Slay A, Brokate B, Elhajjar R (2015) Evaluation of temperature effects on low velocity impact damage in composite sandwich panels with polymeric foam cores. Compos Struct 129:213–223CrossRef
17.
Zurück zum Zitat Sanchez-Saez S, Gomez-del Rio T, Barbero E, Zaera R, Navarro C (2002) Static behavior of CFRPs at low temperatures. Compos Part B Eng 33:383–390CrossRef Sanchez-Saez S, Gomez-del Rio T, Barbero E, Zaera R, Navarro C (2002) Static behavior of CFRPs at low temperatures. Compos Part B Eng 33:383–390CrossRef
18.
Zurück zum Zitat Elamin M, Li B, Tan KT (2018) Impact damage of composite sandwich structures in arctic condition. Compos Struct 192:422–433CrossRef Elamin M, Li B, Tan KT (2018) Impact damage of composite sandwich structures in arctic condition. Compos Struct 192:422–433CrossRef
19.
Zurück zum Zitat Tan KT, Watanabe N, Iwahori Y (2011) X-ray radiography and micro-computed tomography examination of damage characteristics in stitched composites subjected to impact loading. Compos Part B Eng 42(4):874–884CrossRef Tan KT, Watanabe N, Iwahori Y (2011) X-ray radiography and micro-computed tomography examination of damage characteristics in stitched composites subjected to impact loading. Compos Part B Eng 42(4):874–884CrossRef
20.
Zurück zum Zitat Elamin M, Li B, Tan KT (2018) Compression after impact performance of composite sandwich structures in extreme low temperature arctic condition, under review Elamin M, Li B, Tan KT (2018) Compression after impact performance of composite sandwich structures in extreme low temperature arctic condition, under review
21.
Zurück zum Zitat Khan MH, Li B, Tan KT (2018) Impact performance and bending behavior of composite sandwich structures in cold temperature arctic conditions, under review Khan MH, Li B, Tan KT (2018) Impact performance and bending behavior of composite sandwich structures in cold temperature arctic conditions, under review
22.
Zurück zum Zitat Khan MH, Elamin M, Li B, Tan KT (2018) X-ray micro-computed tomography analysis of impact damage morphology in composite sandwich structures due to cold temperature arctic condition. J Compos Mater 52:350\–3522 Khan MH, Elamin M, Li B, Tan KT (2018) X-ray micro-computed tomography analysis of impact damage morphology in composite sandwich structures due to cold temperature arctic condition. J Compos Mater 52:350\–3522
Metadaten
Titel
Behavior of Composite Materials and Structures in Low Temperature Arctic Conditions
verfasst von
K. T. Tan
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-31065-3_21

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.