Skip to main content
Erschienen in: Continuum Mechanics and Thermodynamics 4/2021

09.08.2020 | Original Article

Behavior of energies in strain gradient thermoelasticity of bodies with microtemperatures

verfasst von: Marin Marin, Andreas Öchsner, Sorin Vlase

Erschienen in: Continuum Mechanics and Thermodynamics | Ausgabe 4/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this study, we approach the strain gradient thermoelasticity of bodies with microtemperatures. We define the internal energy corresponding to an arbitrary solution of the mixed problem with boundary and initial values, considered in the context of strain gradient thermoelasticity of bodies with microtemperatures. The Cesaro means of different parts of the internal energy are considered. In our main result, we prove the asymptotic equipartition of the strain and kinetic energies, in the case \(t\rightarrow \infty \).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Mindlin, R.D.: Second gradient of strain and surface-tension in linear elasticity. Int. J. Solids. Struct. 1(4), 417–438 (1965)CrossRef Mindlin, R.D.: Second gradient of strain and surface-tension in linear elasticity. Int. J. Solids. Struct. 1(4), 417–438 (1965)CrossRef
2.
Zurück zum Zitat Mindlin, R.D., Eshel, N.N.: On first strain-gradient theories in linear elasticity. Int. J. Solids. Struct. 4(1), 109–124 (1968)CrossRef Mindlin, R.D., Eshel, N.N.: On first strain-gradient theories in linear elasticity. Int. J. Solids. Struct. 4(1), 109–124 (1968)CrossRef
3.
Zurück zum Zitat Yang, F.A.C.M., Chong, A.C.M., Lam, D.C.C., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids. Struct. 39(10), 2731–2743 (2002)CrossRef Yang, F.A.C.M., Chong, A.C.M., Lam, D.C.C., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids. Struct. 39(10), 2731–2743 (2002)CrossRef
4.
Zurück zum Zitat Lam, D.C., Yang, F., Chong, A.C.M., Wang, J., Tong, P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51(8), 1477–1508 (2003)ADSCrossRef Lam, D.C., Yang, F., Chong, A.C.M., Wang, J., Tong, P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51(8), 1477–1508 (2003)ADSCrossRef
5.
Zurück zum Zitat Levine, H.A.: An equipartition of energy theorem for weak solutions of evolutionary equations in Hilbert space. J. Differ. Eqs. 24, 197–210 (1977)ADSCrossRef Levine, H.A.: An equipartition of energy theorem for weak solutions of evolutionary equations in Hilbert space. J. Differ. Eqs. 24, 197–210 (1977)ADSCrossRef
6.
Zurück zum Zitat Goldstein, J.A., Sandefur, J.T.: Asymptotic equipartition of energy for differential equations in Hilbert space. Trans. Am. Math. Soc. 219, 397–406 (1979)MathSciNetCrossRef Goldstein, J.A., Sandefur, J.T.: Asymptotic equipartition of energy for differential equations in Hilbert space. Trans. Am. Math. Soc. 219, 397–406 (1979)MathSciNetCrossRef
7.
Zurück zum Zitat Gurtin, M.E.: The dynamics of solid–solid phase transitions. Arch. Ration. Mech. Anal. 4, 305–335 (1994)MathSciNetMATH Gurtin, M.E.: The dynamics of solid–solid phase transitions. Arch. Ration. Mech. Anal. 4, 305–335 (1994)MathSciNetMATH
8.
Zurück zum Zitat Rionero, S., Chirita, S.: Lagrange identity method in linear thermoelasticity. Int. J. Eng. Sci. 25, 935–946 (1987)MathSciNetCrossRef Rionero, S., Chirita, S.: Lagrange identity method in linear thermoelasticity. Int. J. Eng. Sci. 25, 935–946 (1987)MathSciNetCrossRef
9.
Zurück zum Zitat Marin, M.: The Lagrange identity method in thermoelasticity of bodies with microstructure. Int. J. Eng. Sci. 32(8), 1229–1240 (1994)MathSciNetCrossRef Marin, M.: The Lagrange identity method in thermoelasticity of bodies with microstructure. Int. J. Eng. Sci. 32(8), 1229–1240 (1994)MathSciNetCrossRef
10.
Zurück zum Zitat Day, W.A.: Means and autocorrections in elastodynamics. Arch. Ration. Mech. Anal. 73, 243–256 (1980)CrossRef Day, W.A.: Means and autocorrections in elastodynamics. Arch. Ration. Mech. Anal. 73, 243–256 (1980)CrossRef
11.
12.
Zurück zum Zitat Altenbach, H., Eremeyev, V:Shell-like Structures: Advanced Theories and Applications (CISM International Centre for Mechanical Sciences) Springer, Berlin (2016) Altenbach, H., Eremeyev, V:Shell-like Structures: Advanced Theories and Applications (CISM International Centre for Mechanical Sciences) Springer, Berlin (2016)
13.
Zurück zum Zitat Marin, M.: On existence and uniqueness in thermoelasticity of micropolar bodies. C R Acad. Sci. Paris Serie II B 321(12), 375–480 (1995)MATH Marin, M.: On existence and uniqueness in thermoelasticity of micropolar bodies. C R Acad. Sci. Paris Serie II B 321(12), 375–480 (1995)MATH
14.
Zurück zum Zitat Abbas, I., Marin, M.: Analytical solution of thermoelastic interaction in a half-space by pulsed laser heating. Physica E Low Dimens. Syst. Nanostruct. 87, 254–260 (2017)ADSCrossRef Abbas, I., Marin, M.: Analytical solution of thermoelastic interaction in a half-space by pulsed laser heating. Physica E Low Dimens. Syst. Nanostruct. 87, 254–260 (2017)ADSCrossRef
15.
Zurück zum Zitat Abd-Elaziz, E.M., Marin, M., Othman, M.I.A.: On the effect of Thomson and initial stress in a thermo-porous elastic solid under GN electromagnetic theory. Symmetry 11(3), 413 (2019)CrossRef Abd-Elaziz, E.M., Marin, M., Othman, M.I.A.: On the effect of Thomson and initial stress in a thermo-porous elastic solid under GN electromagnetic theory. Symmetry 11(3), 413 (2019)CrossRef
16.
Zurück zum Zitat Itu, C., Öchsner, A., Vlase, S., Marin, M.: Improved rigidity of composite circular plates through radial ribs. Proc. Inst. Mech. Eng. Part L: J. Mater.: Des. Appl. 233(8), 1585–1593 (2019) Itu, C., Öchsner, A., Vlase, S., Marin, M.: Improved rigidity of composite circular plates through radial ribs. Proc. Inst. Mech. Eng. Part L: J. Mater.: Des. Appl. 233(8), 1585–1593 (2019)
17.
Zurück zum Zitat Riaz, A., Ellahi, R., Bhatti, M.M., Marin, M.: Study of heat and mass transfer in the Eyring–Powell model of fluid propagating peristaltically through a rectangular compliant channel. Heat Transf. Res. 50(16), 1539–1560 (2019)CrossRef Riaz, A., Ellahi, R., Bhatti, M.M., Marin, M.: Study of heat and mass transfer in the Eyring–Powell model of fluid propagating peristaltically through a rectangular compliant channel. Heat Transf. Res. 50(16), 1539–1560 (2019)CrossRef
18.
Zurück zum Zitat Sharma, K., Marin, M.: Reflection and transmission of waves from imperfect boundary between two heat conducting micropolar thermoelastic solids. An. St. Univ. Ovidius Constanta 22(2), 151–175 (2014)MathSciNetMATH Sharma, K., Marin, M.: Reflection and transmission of waves from imperfect boundary between two heat conducting micropolar thermoelastic solids. An. St. Univ. Ovidius Constanta 22(2), 151–175 (2014)MathSciNetMATH
19.
Zurück zum Zitat Bhatti, M.M., Ellahi, R., Zeeshan, A., et al.: Numerical study of heat transfer and Hall current impact on peristaltic propulsion of particle-fluid suspension with compliant wall properties. Mod. Phys. Lett. B 33(35), 1950439 (2019)ADSMathSciNetCrossRef Bhatti, M.M., Ellahi, R., Zeeshan, A., et al.: Numerical study of heat transfer and Hall current impact on peristaltic propulsion of particle-fluid suspension with compliant wall properties. Mod. Phys. Lett. B 33(35), 1950439 (2019)ADSMathSciNetCrossRef
20.
Zurück zum Zitat Marin, M.: A partition of energy in thermoelasticity of microstretch bodies. Nonlinear Anal. Real World Appl. 11(4), 2436–2447 (2010)MathSciNetCrossRef Marin, M.: A partition of energy in thermoelasticity of microstretch bodies. Nonlinear Anal. Real World Appl. 11(4), 2436–2447 (2010)MathSciNetCrossRef
21.
Zurück zum Zitat Katouzian, M., Vlase, S., Calin, M.R.: Experimental procedures to determine the viscoelastic parameters of laminated composites. J. Optoelectron. Adv. Mater. 13(9–10), 1185–1188 (2011) Katouzian, M., Vlase, S., Calin, M.R.: Experimental procedures to determine the viscoelastic parameters of laminated composites. J. Optoelectron. Adv. Mater. 13(9–10), 1185–1188 (2011)
22.
Zurück zum Zitat Stanciu, A., Teodorescu-Draghicescu, H., Vlase, S., et al.: Mechanical behavior of CSM450 and RT800 laminates subjected to four-point bend tests. Optoelectron. Adv. Mater. 6(3–4), 495–497 (2012) Stanciu, A., Teodorescu-Draghicescu, H., Vlase, S., et al.: Mechanical behavior of CSM450 and RT800 laminates subjected to four-point bend tests. Optoelectron. Adv. Mater. 6(3–4), 495–497 (2012)
23.
Zurück zum Zitat Marin, M., Öchsner, A., Craciun, E.M.: A generalization of the Saint-Venant’s principle for an elastic body with dipolar structure. Continuum Mech. Thermodyn. 32, 269–278 (2020)ADSMathSciNetCrossRef Marin, M., Öchsner, A., Craciun, E.M.: A generalization of the Saint-Venant’s principle for an elastic body with dipolar structure. Continuum Mech. Thermodyn. 32, 269–278 (2020)ADSMathSciNetCrossRef
24.
Zurück zum Zitat Ahmadi, G., Firoozbaksh, K.: First strain-gradient theory of thermoelasticity. Int. J. Solids. Struct. 11, 339–345 (1975)CrossRef Ahmadi, G., Firoozbaksh, K.: First strain-gradient theory of thermoelasticity. Int. J. Solids. Struct. 11, 339–345 (1975)CrossRef
25.
Zurück zum Zitat Aouadi, M., El Dhaba, A.R., Ghaleb, A.F.: Stability aspects in strain gradient theory of thermoelasticity with mass diffusion. J. Appl. Math. Mech. (ZAMM) 98(10), 1794–1812 (2018)MathSciNetCrossRef Aouadi, M., El Dhaba, A.R., Ghaleb, A.F.: Stability aspects in strain gradient theory of thermoelasticity with mass diffusion. J. Appl. Math. Mech. (ZAMM) 98(10), 1794–1812 (2018)MathSciNetCrossRef
26.
Zurück zum Zitat Grot, R.: Thermodynamics of a continuum with microstructure. Int. J. Eng. Sci. 7, 801–814 (1969)CrossRef Grot, R.: Thermodynamics of a continuum with microstructure. Int. J. Eng. Sci. 7, 801–814 (1969)CrossRef
27.
Zurück zum Zitat Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)MATH Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)MATH
28.
Zurück zum Zitat Hlavacek, I., Necas, J.: On inequalities of Korn’s type. Arch. Ration. Mech. Anal. 36, 305–334 (1980)CrossRef Hlavacek, I., Necas, J.: On inequalities of Korn’s type. Arch. Ration. Mech. Anal. 36, 305–334 (1980)CrossRef
Metadaten
Titel
Behavior of energies in strain gradient thermoelasticity of bodies with microtemperatures
verfasst von
Marin Marin
Andreas Öchsner
Sorin Vlase
Publikationsdatum
09.08.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Continuum Mechanics and Thermodynamics / Ausgabe 4/2021
Print ISSN: 0935-1175
Elektronische ISSN: 1432-0959
DOI
https://doi.org/10.1007/s00161-020-00914-z

Weitere Artikel der Ausgabe 4/2021

Continuum Mechanics and Thermodynamics 4/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.